BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 19340255)

  • 1. Hardware implementation and calibration of background noise for an integration-based fluorescence lifetime sensing algorithm.
    Li DU; Walker R; Richardson J; Rae B; Buts A; Renshaw D; Henderson R
    J Opt Soc Am A Opt Image Sci Vis; 2009 Apr; 26(4):804-14. PubMed ID: 19340255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time fluorescence lifetime imaging system with a 32 x 32 0.13microm CMOS low dark-count single-photon avalanche diode array.
    Li DU; Arlt J; Richardson J; Walker R; Buts A; Stoppa D; Charbon E; Henderson R
    Opt Express; 2010 May; 18(10):10257-69. PubMed ID: 20588879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-chip, time-correlated, fluorescence lifetime extraction algorithms and error analysis.
    Li DU; Bonnist E; Renshaw D; Henderson R
    J Opt Soc Am A Opt Image Sci Vis; 2008 May; 25(5):1190-8. PubMed ID: 18451928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method.
    Li DU; Rae B; Andrews R; Arlt J; Henderson R
    J Biomed Opt; 2010; 15(1):017006. PubMed ID: 20210480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced fluorescence lifetime imaging algorithms for CMOS single-photon sensor based multi-focal multi-photon microscopy.
    Li DD; Poland S; Coelho S; Tyndall D; Zhang W; Richardson J; Henderson RK; Ameer-Beg SM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3036-9. PubMed ID: 24110367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm.
    Li DD; Arlt J; Tyndall D; Walker R; Richardson J; Stoppa D; Charbon E; Henderson RK
    J Biomed Opt; 2011 Sep; 16(9):096012. PubMed ID: 21950926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smart Wide-field Fluorescence Lifetime Imaging System with CMOS Single-photon Avalanche Diode Arrays.
    Xiao D; Zang Z; Wang Q; Jiao Z; Rocca FMD; Chen Y; Li DDU
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1887-1890. PubMed ID: 36086288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-laser shot fluorescence lifetime imaging on the nanosecond timescale using a Dual Image and Modeling Evaluation algorithm.
    Ehn A; Johansson O; Arvidsson A; Aldén M; Bood J
    Opt Express; 2012 Jan; 20(3):3043-56. PubMed ID: 22330541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upgrading time domain FLIM using an adaptive Monte Carlo data inflation algorithm.
    Trinel D; Leray A; Spriet C; Usson Y; Héliot L
    Cytometry A; 2011 Jul; 79(7):528-37. PubMed ID: 21567936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. flatFLIM: enhancing the dynamic range of frequency domain FLIM.
    Schuermann KC; Grecco HE
    Opt Express; 2012 Aug; 20(18):20730-41. PubMed ID: 23037122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global analysis of time correlated single photon counting FRET-FLIM data.
    Grecco HE; Roda-Navarro P; Verveer PJ
    Opt Express; 2009 Apr; 17(8):6493-508. PubMed ID: 19365474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulation of 3D mapping of cardiac electrical activity with spinning slit confocal optics.
    Hwang SM; Choi BR; Salama G
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1093-7. PubMed ID: 17946022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of effective noise bandwidth for broadband optical coherence tomography operation.
    Cernat R; Dobre GM; Bradu A; Podoleanu AG
    J Opt Soc Am A Opt Image Sci Vis; 2009 Apr; 26(4):723-31. PubMed ID: 19340245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-real-time fluorescence imaging with lifetime dependent contrast.
    Jiang PC; Grundfest WS; Stafsudd OM
    J Biomed Opt; 2011 Aug; 16(8):086001. PubMed ID: 21895313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulated CMOS camera for fluorescence lifetime microscopy.
    Chen H; Holst G; Gratton E
    Microsc Res Tech; 2015 Dec; 78(12):1075-81. PubMed ID: 26500051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global analysis of microscopic fluorescence lifetime images using spectral segmentation and a digital micromirror spatial illuminator.
    Bednarkiewicz A; Whelan MP
    J Biomed Opt; 2008; 13(4):041316. PubMed ID: 19021324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new single-photon avalanche diode in 90nm standard CMOS technology.
    Karami MA; Gersbach M; Yoon HJ; Charbon E
    Opt Express; 2010 Oct; 18(21):22158-66. PubMed ID: 20941117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of simplified Monte Carlo simulation and diffusion approximation for the fluorescence signal from phantoms with typical mouse tissue optical properties.
    Ma G; Delorme JF; Gallant P; Boas DA
    Appl Opt; 2007 Apr; 46(10):1686-92. PubMed ID: 17356611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-domain fluorescence lifetime imaging techniques suitable for solid-state imaging sensor arrays.
    Li DD; Ameer-Beg S; Arlt J; Tyndall D; Walker R; Matthews DR; Visitkul V; Richardson J; Henderson RK
    Sensors (Basel); 2012; 12(5):5650-69. PubMed ID: 22778606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of path-history-based fluorescence Monte Carlo method for photon migration in heterogeneous media.
    Jiang X; Deng Y; Luo Z; Wang K; Lian L; Yang X; Meglinski I; Luo Q
    Opt Express; 2014 Dec; 22(26):31948-65. PubMed ID: 25607163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.