These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 19340281)

  • 1. Resolution-enhanced optical coherence tomography based on classical intensity interferometry.
    Lajunen H; Torres-Company V; Lancis J; Friberg AT
    J Opt Soc Am A Opt Image Sci Vis; 2009 Apr; 26(4):1049-54. PubMed ID: 19340281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution interference with programmable classical incoherent light.
    Zhang EF; Liu WT; Chen PX
    J Opt Soc Am A Opt Image Sci Vis; 2015 Jul; 32(7):1251-5. PubMed ID: 26367153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-fiber frequency-domain measurement of ultrashort second-order correlations of incoherent light.
    Torres-Company V; Fernández-Pousa CR; Torres JP
    Opt Lett; 2010 Jun; 35(11):1850-2. PubMed ID: 20517438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intensity correlation OCT is a classical mimic of quantum OCT providing up to twofold resolution improvement.
    Kolenderska SM; Kolenderski P
    Sci Rep; 2021 May; 11(1):11403. PubMed ID: 34059774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classical low-coherence interferometry based on broadband parametric fluorescence and amplification.
    Le Gouët J; Venkatraman D; Wong FN; Shapiro JH
    Opt Express; 2009 Sep; 17(20):17874-87. PubMed ID: 19907576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical dispersion compensation for Partial Coherence Interferometry and Optical Coherence Tomography.
    Fercher A; Hitzenberger C; Sticker M; Zawadzki R; Karamata B; Lasser T
    Opt Express; 2001 Dec; 9(12):610-5. PubMed ID: 19424297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resolution improvement in spectral-domain optical coherence tomography based on classical intensity correlations.
    Shirai T; Friberg AT
    Opt Lett; 2013 Jan; 38(2):115-7. PubMed ID: 23454933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ghost optical coherence tomography.
    Amiot CG; Ryczkowski P; Friberg AT; Dudley JM; Genty G
    Opt Express; 2019 Aug; 27(17):24114-24122. PubMed ID: 31510305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noise characterization of supercontinuum sources for low-coherence interferometry applications.
    Brown WJ; Kim S; Wax A
    J Opt Soc Am A Opt Image Sci Vis; 2014 Dec; 31(12):2703-10. PubMed ID: 25606759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Second order coherence of broadband down-converted light on ultrashort time scale determined by two photon absorption in semiconductor.
    Boitier F; Godard A; Ryasnyanskiy A; Dubreuil N; Delaye P; Fabre C; Rosencher E
    Opt Express; 2010 Sep; 18(19):20401-8. PubMed ID: 20940932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Demonstration of Spectral Intensity Optical Coherence Tomography.
    Ryczkowski P; Turunen J; Friberg AT; Genty G
    Sci Rep; 2016 Feb; 6():22126. PubMed ID: 26916668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast measurements of optical spectral coherence by single-shot time-stretch interferometry.
    Xu Y; Wei X; Ren Z; Wong KK; Tsia KK
    Sci Rep; 2016 Jun; 6():27937. PubMed ID: 27295560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axial Length Measurement Failure Rates With Biometers Using Swept-Source Optical Coherence Tomography Compared to Partial-Coherence Interferometry and Optical Low-Coherence Interferometry.
    McAlinden C; Wang Q; Gao R; Zhao W; Yu A; Li Y; Guo Y; Huang J
    Am J Ophthalmol; 2017 Jan; 173():64-69. PubMed ID: 27664702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unifying intensity noise and second-order coherence properties of amplified spontaneous emission sources.
    Blazek M; Hartmann S; Molitor A; Elsaesser W
    Opt Lett; 2011 Sep; 36(17):3455-7. PubMed ID: 21886242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classical realization of dispersion-canceled, artifact-free, and background-free optical coherence tomography.
    Ogawa K; Kitano M
    Opt Express; 2016 Apr; 24(8):8280-9. PubMed ID: 27137266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum-optical coherence tomography with classical light.
    Lavoie J; Kaltenbaek R; Resch KJ
    Opt Express; 2009 Mar; 17(5):3818-25. PubMed ID: 19259223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution optical coherence tomography over a large depth range with an axicon lens.
    Ding Z; Ren H; Zhao Y; Nelson JS; Chen Z
    Opt Lett; 2002 Feb; 27(4):243-5. PubMed ID: 18007767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation.
    Wojtkowski M; Srinivasan V; Ko T; Fujimoto J; Kowalczyk A; Duker J
    Opt Express; 2004 May; 12(11):2404-22. PubMed ID: 19475077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging.
    Cimalla P; Walther J; Mehner M; Cuevas M; Koch E
    Opt Express; 2009 Oct; 17(22):19486-500. PubMed ID: 19997169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact Er:Yb:glass-laser-based supercontinuum source for high-resolution optical coherence tomography.
    Stumpf MC; Zeller SC; Schlatter A; Okuno T; Südmeyer T; Keller U
    Opt Express; 2008 Jul; 16(14):10572-9. PubMed ID: 18607472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.