These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 19340821)

  • 21. Why 'the bigger the better' is not always the case when utilising microelectrode arrays: high density vs. low density arrays for the electroanalytical sensing of chromium(VI).
    Hood SJ; Kampouris DK; Kadara RO; Jenkinson N; del Campo FJ; Muñoz FX; Banks CE
    Analyst; 2009 Nov; 134(11):2301-5. PubMed ID: 19838419
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of tissue scaffold degradation using electrochemical techniques.
    Willows A; Fan Q; Ismail F; Vaz CM; Tomlins PE; Mikhalovska LI; Mikhalovsky SV; James SL; Vadgama P; Wasikiewicz J
    Acta Biomater; 2008 May; 4(3):686-96. PubMed ID: 18082477
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A gradient microarray electronic nose based on percolating SnO(2) nanowire sensing elements.
    Sysoev VV; Goschnick J; Schneider T; Strelcov E; Kolmakov A
    Nano Lett; 2007 Oct; 7(10):3182-8. PubMed ID: 17924710
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diamond microelectrodes for in vitro electroanalytical measurements: current status and remaining challenges.
    Park J; Quaiserová-Mocko V; Patel BA; Novotný M; Liu A; Bian X; Galligan JJ; Swain GM
    Analyst; 2008 Jan; 133(1):17-24. PubMed ID: 18087609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ion diffusion in channels containing random arrays of microspheres: an electrochemical time-of-flight method.
    Monson CF; Majda M
    Anal Chem; 2007 Dec; 79(24):9315-20. PubMed ID: 17999466
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanostructured optical fibre arrays for high-density biochemical sensing and remote imaging.
    Deiss F; Sojic N; White DJ; Stoddart PR
    Anal Bioanal Chem; 2010 Jan; 396(1):53-71. PubMed ID: 19916005
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization of an electrochemical DNA assay by using a 48-electrode array and redox amplification studies by means of scanning electrochemical microscopy.
    Neugebauer S; Zimdars A; Liepold P; Gebala M; Schuhmann W; Hartwich G
    Chembiochem; 2009 May; 10(7):1193-9. PubMed ID: 19353601
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dielectrophoresis of DNA: time- and frequency-dependent collections on microelectrodes.
    Bakewell DJ; Morgan H
    IEEE Trans Nanobioscience; 2006 Mar; 5(1):1-8. PubMed ID: 16570867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stripping voltammetry at micro-interface arrays: a review.
    Herzog G; Beni V
    Anal Chim Acta; 2013 Mar; 769():10-21. PubMed ID: 23498116
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel glass microprobe arrays for neural recording.
    Lin CW; Lee YT; Chang CW; Hsu WL; Chang YC; Fang W
    Biosens Bioelectron; 2009 Oct; 25(2):475-81. PubMed ID: 19726175
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Introduction to Microelectrode Arrays, the Site-Selective Functionalization of Electrode Surfaces, and the Real-Time Detection of Binding Events.
    Graaf MD; Moeller KD
    Langmuir; 2015 Jul; 31(28):7697-706. PubMed ID: 25536120
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent advances in microparticle continuous separation.
    Kersaudy-Kerhoas M; Dhariwal R; Desmulliez MP
    IET Nanobiotechnol; 2008 Mar; 2(1):1-13. PubMed ID: 18298195
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ion-transfer voltammetry at silicon membrane-based arrays of micro-liquid-liquid interfaces.
    Zazpe R; Hibert C; O'Brien J; Lanyon YH; Arrigan DW
    Lab Chip; 2007 Dec; 7(12):1732-7. PubMed ID: 18030394
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Moving known libraries to an addressable array: a site-selective hetero-Michael reaction.
    Stuart M; Maurer K; Moeller KD
    Bioconjug Chem; 2008 Aug; 19(8):1514-7. PubMed ID: 18652501
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scanning electrochemical microscopy in the 21st century.
    Sun P; Laforge FO; Mirkin MV
    Phys Chem Chem Phys; 2007 Feb; 9(7):802-23. PubMed ID: 17287874
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical and morphological changes on platinum microelectrode surfaces in AC and DC fields with biological buffer solutions.
    Gencoglu A; Minerick A
    Lab Chip; 2009 Jul; 9(13):1866-73. PubMed ID: 19532961
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrochemical gene-function analysis for single cells with addressable microelectrode/microwell arrays.
    Lin Z; Takahashi Y; Murata T; Takeda M; Ino K; Shiku H; Matsue T
    Angew Chem Int Ed Engl; 2009; 48(11):2044-6. PubMed ID: 19191275
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conducting polymers for electrochemical DNA sensing.
    Peng H; Zhang L; Soeller C; Travas-Sejdic J
    Biomaterials; 2009 Apr; 30(11):2132-48. PubMed ID: 19147223
    [TBL] [Abstract][Full Text] [Related]  

  • 39. "Cosmetic electrochemistry": the facile production of graphite microelectrode ensembles.
    Choudhry NA; Kadara RO; Banks CE
    Phys Chem Chem Phys; 2010 Mar; 12(10):2285-7. PubMed ID: 20449340
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fast electrochemical detection of anti-HIV antibodies: coupling allosteric enzymes and disk microelectrode arrays.
    Laczka O; Ferraz RM; Ferrer-Miralles N; Villaverde A; Muñoz FX; del Campo FJ
    Anal Chim Acta; 2009 May; 641(1-2):1-6. PubMed ID: 19393360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.