These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 19340821)

  • 41. Fabrication of TiO2 and metal nanoparticle-microelectrode arrays by photolithography and site-selective photocatalytic deposition.
    Li X; Tian Y; Xia P; Luo Y; Rui Q
    Anal Chem; 2009 Oct; 81(19):8249-55. PubMed ID: 19736965
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrophoretic deposition of manganese dioxide-multiwalled carbon nanotube composites for electrochemical supercapacitors.
    Wang Y; Zhitomirsky I
    Langmuir; 2009 Sep; 25(17):9684-9. PubMed ID: 19449813
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of Microelectrode Arrays Using Electroless Plating for CMOS-Based Direct Counting of Bacterial and HeLa Cells.
    Niitsu K; Ota S; Gamo K; Kondo H; Hori M; Nakazato K
    IEEE Trans Biomed Circuits Syst; 2015 Oct; 9(5):607-19. PubMed ID: 26561481
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Carbon-ring microelectrode arrays for electrochemical imaging of single cell exocytosis: fabrication and characterization.
    Lin Y; Trouillon R; Svensson MI; Keighron JD; Cans AS; Ewing AG
    Anal Chem; 2012 Mar; 84(6):2949-54. PubMed ID: 22339586
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Review: Recent applications of scanning electrochemical microscopy to the study of charge transfer kinetics.
    Lu X; Wang Q; Liu X
    Anal Chim Acta; 2007 Oct; 601(1):10-25. PubMed ID: 17904468
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Investigating the concept of diffusional independence. Potential step transients at nano- and micro-electrode arrays: theory and experiment.
    Menshykau D; Huang XJ; Rees NV; del Campo FJ; Muñoz FX; Compton RG
    Analyst; 2009 Feb; 134(2):343-8. PubMed ID: 19173060
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrochemical immunochip sensor for aflatoxin M1 detection.
    Parker CO; Lanyon YH; Manning M; Arrigan DW; Tothill IE
    Anal Chem; 2009 Jul; 81(13):5291-8. PubMed ID: 19489595
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The high dispersion of DNA-multiwalled carbon nanotubes and their properties.
    Li Z; Wu Z; Li K
    Anal Biochem; 2009 Apr; 387(2):267-70. PubMed ID: 19454222
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ceramic-based microelectrode arrays: recording surface characteristics and topographical analysis.
    Talauliker PM; Price DA; Burmeister JJ; Nagari S; Quintero JE; Pomerleau F; Huettl P; Hastings JT; Gerhardt GA
    J Neurosci Methods; 2011 Jun; 198(2):222-9. PubMed ID: 21513736
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Amperometry and cyclic voltammetry with carbon fiber microelectrodes at single cells.
    Mundroff ML; Wightman RM
    Curr Protoc Neurosci; 2002 May; Chapter 6():Unit 6.14. PubMed ID: 18428562
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Simple and fast method for fabrication of endoscopic implantable sensor arrays.
    Tahirbegi IB; Alvira M; Mir M; Samitier J
    Sensors (Basel); 2014 Jun; 14(7):11416-26. PubMed ID: 24971473
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The controlled growth of single metallic and conducting polymer nanowires via gate-assisted electrochemical deposition.
    Hu Y; To AC; Yun M
    Nanotechnology; 2009 Jul; 20(28):285605. PubMed ID: 19550021
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The potential of microelectrode arrays and microelectronics for biomedical research and diagnostics.
    Jones IL; Livi P; Lewandowska MK; Fiscella M; Roscic B; Hierlemann A
    Anal Bioanal Chem; 2011 Mar; 399(7):2313-29. PubMed ID: 20676620
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microchips for cell-based assays.
    Dufva M
    Methods Mol Biol; 2009; 509():135-44. PubMed ID: 19212719
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nanophotonic ion production from silicon microcolumn arrays.
    Walker BN; Razunguzwa T; Powell M; Knochenmuss R; Vertes A
    Angew Chem Int Ed Engl; 2009; 48(9):1669-72. PubMed ID: 19170149
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Capacitive and solution resistance effects on voltammetric responses at a disk microelectrode covered with a self-assembled monolayer in the presence of electron hopping.
    Amatore C; Oleinick A; Klymenko OV; Svir I
    Anal Chem; 2009 Oct; 81(20):8545-56. PubMed ID: 19761227
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The physicochemical aspects of DNA sensing using electrochemical methods.
    Batchelor-McAuley C; Wildgoose GG; Compton RG
    Biosens Bioelectron; 2009 Jul; 24(11):3183-90. PubMed ID: 19264472
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sonochemically fabricated microelectrode arrays for use as sensing platforms.
    Collyer SD; Davis F; Higson SP
    Sensors (Basel); 2010; 10(5):5090-132. PubMed ID: 22399926
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microelectrode electrochemistry with semiconducting microelectrode chips.
    Li T; Dong H; Fu X; He M; Li Y; Hu W
    Small; 2014 Mar; 10(5):878-83. PubMed ID: 24123854
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optimization of the geometry and porosity of microelectrode arrays for sensor design.
    Sandison ME; Anicet N; Glidle A; Cooper JM
    Anal Chem; 2002 Nov; 74(22):5717-25. PubMed ID: 12463354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.