These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 19340832)
1. Red blood cell quantification microfluidic chip using polyelectrolytic gel electrodes. Kim KB; Chun H; Kim HC; Chung TD Electrophoresis; 2009 May; 30(9):1464-9. PubMed ID: 19340832 [TBL] [Abstract][Full Text] [Related]
2. Cytometry and velocimetry on a microfluidic chip using polyelectrolytic salt bridges. Chun H; Chung TD; Kim HC Anal Chem; 2005 Apr; 77(8):2490-5. PubMed ID: 15828785 [TBL] [Abstract][Full Text] [Related]
3. A portable microfluidic flow cytometer based on simultaneous detection of impedance and fluorescence. Joo S; Kim KH; Kim HC; Chung TD Biosens Bioelectron; 2010 Feb; 25(6):1509-15. PubMed ID: 20004091 [TBL] [Abstract][Full Text] [Related]
4. Ultrafast active mixer using polyelectrolytic ion extractor. Chun H; Kim HC; Chung TD Lab Chip; 2008 May; 8(5):764-71. PubMed ID: 18432347 [TBL] [Abstract][Full Text] [Related]
5. Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry. Holmes D; Pettigrew D; Reccius CH; Gwyer JD; van Berkel C; Holloway J; Davies DE; Morgan H Lab Chip; 2009 Oct; 9(20):2881-9. PubMed ID: 19789739 [TBL] [Abstract][Full Text] [Related]
6. Coincidence detection of heterogeneous cell populations from whole blood with coplanar electrodes in a microfluidic impedance cytometer. Hassan U; Bashir R Lab Chip; 2014 Nov; 14(22):4370-81. PubMed ID: 25231594 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional focusing of particles using negative dielectrophoretic force in a microfluidic chip with insulating microstructures and dual planar microelectrodes. Jen CP; Weng CH; Huang CT Electrophoresis; 2011 Sep; 32(18):2428-35. PubMed ID: 21874653 [TBL] [Abstract][Full Text] [Related]
8. High-throughput biophysical measurement of human red blood cells. Zheng Y; Shojaei-Baghini E; Azad A; Wang C; Sun Y Lab Chip; 2012 Jul; 12(14):2560-7. PubMed ID: 22581052 [TBL] [Abstract][Full Text] [Related]
10. On-chip determination of spermatozoa concentration using electrical impedance measurements. Segerink LI; Sprenkels AJ; ter Braak PM; Vermes I; van den Berg A Lab Chip; 2010 Apr; 10(8):1018-24. PubMed ID: 20358109 [TBL] [Abstract][Full Text] [Related]
11. The potential of autofluorescence for the detection of single living cells for label-free cell sorting in microfluidic systems. Emmelkamp J; Wolbers F; Andersson H; Dacosta RS; Wilson BC; Vermes I; van den Berg A Electrophoresis; 2004 Nov; 25(21-22):3740-5. PubMed ID: 15565697 [TBL] [Abstract][Full Text] [Related]
12. On-chip micro-biosensor for the detection of human CD4(+) cells based on AC impedance and optical analysis. Mishra NN; Retterer S; Zieziulewicz TJ; Isaacson M; Szarowski D; Mousseau DE; Lawrence DA; Turner JN Biosens Bioelectron; 2005 Nov; 21(5):696-704. PubMed ID: 16242607 [TBL] [Abstract][Full Text] [Related]
13. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906 [TBL] [Abstract][Full Text] [Related]
14. Sample concentration and impedance detection on a microfluidic polymer chip. Sabounchi P; Morales AM; Ponce P; Lee LP; Simmons BA; Davalos RV Biomed Microdevices; 2008 Oct; 10(5):661-70. PubMed ID: 18484178 [TBL] [Abstract][Full Text] [Related]
15. Detection of bacterial cells by impedance spectra via fluidic electrodes in a microfluidic device. Zhu T; Pei Z; Huang J; Xiong C; Shi S; Fang J Lab Chip; 2010 Jun; 10(12):1557-60. PubMed ID: 20517558 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional focusing of red blood cells in microchannel flows for bio-sensing applications. Kim YW; Yoo JY Biosens Bioelectron; 2009 Aug; 24(12):3677-82. PubMed ID: 19559591 [TBL] [Abstract][Full Text] [Related]
17. Analytical solutions and validation of electric field and dielectrophoretic force in a bio-microfluidic channel. Nerguizian V; Alazzam A; Roman D; Stiharu I; Burnier M Electrophoresis; 2012 Feb; 33(3):426-35. PubMed ID: 22287173 [TBL] [Abstract][Full Text] [Related]
18. Identification, characterization and manipulation of Babesia-bovis-infected red blood cells using microfluidics technology. Nascimento E; Silva T; Oliva A Parassitologia; 2007 May; 49 Suppl 1():45-52. PubMed ID: 17691607 [TBL] [Abstract][Full Text] [Related]
19. Automatic microfluidic platform for cell separation and nucleus collection. Tai CH; Hsiung SK; Chen CY; Tsai ML; Lee GB Biomed Microdevices; 2007 Aug; 9(4):533-43. PubMed ID: 17508288 [TBL] [Abstract][Full Text] [Related]
20. Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium. Han KH; Frazier AB Lab Chip; 2008 Jul; 8(7):1079-86. PubMed ID: 18584082 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]