These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 19341075)

  • 1. The effect of hydrogen peroxide on spontaneous quantal and nonquantal acetylcholine release from rat motor nerve endings.
    Shakirzyanova AV; Malomouzh AI; Naumenko NV; Nikolsky EE
    Dokl Biol Sci; 2009; 424():18-20. PubMed ID: 19341075
    [No Abstract]   [Full Text] [Related]  

  • 2. Adrenaline Facilitates Synaptic Transmission by Synchronizing Release of Acetylcholine Quanta from Motor Nerve Endings.
    Khuzakhmetova V; Bukharaeva E
    Cell Mol Neurobiol; 2021 Mar; 41(2):395-401. PubMed ID: 32274597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of spontaneous acetylcholine release from motor nerve terminal by calmodulin inhibitors.
    Jinnai K; Takahashi K; Fujita T
    Eur J Pharmacol; 1986 Nov; 130(3):197-201. PubMed ID: 3792446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced spontaneous transmitter release at murine motor nerve terminals with cyclosporine.
    Lin MJ; Lin-Shiau SY
    Neuropharmacology; 1999 Jan; 38(1):195-8. PubMed ID: 10193910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective depletion of clear synaptic vesicles and enhanced quantal transmitter release at frog motor nerve endings produced by trachynilysin, a protein toxin isolated from stonefish (Synanceia trachynis) venom.
    Colasante C; Meunier FA; Kreger AS; Molgó J
    Eur J Neurosci; 1996 Oct; 8(10):2149-56. PubMed ID: 8921306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potentiation by tonic A2a-adenosine receptor activation of CGRP-facilitated [3H]-ACh release from rat motor nerve endings.
    Correia-de-Sá P; Ribeiro JA
    Br J Pharmacol; 1994 Feb; 111(2):582-8. PubMed ID: 8004402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the muscarinic receptor subtypes involved in autoregulation of acetylcholine quantal release from frog motor nerve endings.
    Kovyazina IV; Tsentsevitsky AN; Nikolsky EE
    Dokl Biol Sci; 2015; 460():5-7. PubMed ID: 25773240
    [No Abstract]   [Full Text] [Related]  

  • 8. Role of muscarinic cholinergic receptors in the control of the intensity of nonquantal acetylcholine release from rat motor nerve endings.
    Malomouzh AI; Mukhtarov MR; Nikolsky EE
    Dokl Biol Sci; 2007; 414():180-2. PubMed ID: 17668614
    [No Abstract]   [Full Text] [Related]  

  • 9. On the blockade of acetylcholine release at mouse motor nerve terminals by beta-bungarotoxin and crotoxin.
    Rowan EG; Pemberton KE; Harvey AL
    Br J Pharmacol; 1990 Jun; 100(2):301-4. PubMed ID: 2116202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecto-AMP deaminase blunts the ATP-derived adenosine A2A receptor facilitation of acetylcholine release at rat motor nerve endings.
    Magalhães-Cardoso MT; Pereira MF; Oliveira L; Ribeiro JA; Cunha RA; Correia-de-Sá P
    J Physiol; 2003 Jun; 549(Pt 2):399-408. PubMed ID: 12679375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of curare on the release of acetylcholine from mammalian motor nerve terminals and an estimate of quantum content.
    Fletcher P; Forrester T
    J Physiol; 1975 Sep; 251(1):131-44. PubMed ID: 1185611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenthonium, a quaternary derivative of (-)-hyoscyamine, enhances the spontaneous release of acetylcholine at rat motor nerve terminals.
    Fann ML; Souccar C; Lapa AJ
    Br J Pharmacol; 1990 Jul; 100(3):441-6. PubMed ID: 2390670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetylcholine release from motor-nerve endings in rats treated with neostigmine.
    Roberts DV; Thesleff S
    Eur J Pharmacol; 1969; 6(3):281-5. PubMed ID: 4308016
    [No Abstract]   [Full Text] [Related]  

  • 14. Constraints on the interpretation of nonquantal acetylcholine release from frog neuromuscular junctions.
    Meriney SD; Young SH; Grinnell AD
    Proc Natl Acad Sci U S A; 1989 Mar; 86(6):2098-102. PubMed ID: 2784566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium dependence of spontaneous acetylcholine release at mammalian motor nerve terminals.
    Elmqvist D; Feldman DS
    J Physiol; 1965 Dec; 181(3):487-97. PubMed ID: 4956407
    [No Abstract]   [Full Text] [Related]  

  • 16. Incorporation of synaptotagmin II to the axolemma of botulinum type-A poisoned mouse motor endings during enhanced quantal acetylcholine release.
    Angaut-Petit D; Molgó J; Faille L; Juzans P; Takahashi M
    Brain Res; 1998 Jun; 797(2):357-60. PubMed ID: 9666170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does d-tubocurarine inhibit the release of acetylcholine from motor nerve endings?
    Chang CC; Cheng HC; Chen TF
    Jpn J Physiol; 1967 Oct; 17(5):505-15. PubMed ID: 5300824
    [No Abstract]   [Full Text] [Related]  

  • 18. [Relation between temperature and processes of spontaneous quantum and non-quantum mediator release from motor nerve endings of the mouse].
    Nikol'skiĭ EE; Voronin VA
    Neirofiziologiia; 1986; 18(3):361-7. PubMed ID: 3016571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for constitutively-active adenosine receptors at mammalian motor nerve endings.
    Searl TJ; Silinsky EM
    Eur J Pharmacol; 2012 Jun; 685(1-3):38-41. PubMed ID: 22542659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of l-vesamicol on transmitter release from rat motor nerve terminals at high frequencies of nerve stimulation.
    Prior C; Searl T; Marshall IG
    Br J Pharmacol; 1989 Dec; 98 Suppl():826P. PubMed ID: 2575420
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.