BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 19341084)

  • 41. Physiological and iTRAQ-Based Quantitative Proteomics Analysis of Methyl Jasmonate-Induced Tolerance in Brassica napus Under Arsenic Stress.
    Farooq MA; Zhang K; Islam F; Wang J; Athar HUR; Nawaz A; Ullah Zafar Z; Xu J; Zhou W
    Proteomics; 2018 May; 18(10):e1700290. PubMed ID: 29528557
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hydrogen sulfide alleviates cadmium-induced morpho-physiological and ultrastructural changes in Brassica napus.
    Ali B; Gill RA; Yang S; Gill MB; Ali S; Rafiq MT; Zhou W
    Ecotoxicol Environ Saf; 2014 Dec; 110():197-207. PubMed ID: 25255479
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L.
    Rossi L; Zhang W; Lombardini L; Ma X
    Environ Pollut; 2016 Dec; 219():28-36. PubMed ID: 27661725
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Distribution of Cd, Pb, Zn, Mo, and S in juvenile and mature Brassica napus L. var. napus.
    Romih N; Grabner B; Lakota M; Ribaric-Lasnik C
    Int J Phytoremediation; 2012 Mar; 14(3):282-301. PubMed ID: 22567712
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Changes in fatty acid content and composition between wild type and CsHMA3 overexpressing Camelina sativa under heavy-metal stress.
    Park W; Feng Y; Kim H; Suh MC; Ahn SJ
    Plant Cell Rep; 2015 Sep; 34(9):1489-98. PubMed ID: 25972262
    [TBL] [Abstract][Full Text] [Related]  

  • 46. miR395 is involved in detoxification of cadmium in Brassica napus.
    Zhang LW; Song JB; Shu XX; Zhang Y; Yang ZM
    J Hazard Mater; 2013 Apr; 250-251():204-11. PubMed ID: 23454459
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of EDTA on phytoextraction of heavy metals (Zn, Mn and Pb) from sludge-amended soil with Brassica napus.
    Zaier H; Ghnaya T; Ben Rejeb K; Lakhdar A; Rejeb S; Jemal F
    Bioresour Technol; 2010 Jun; 101(11):3978-83. PubMed ID: 20129779
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Annotation and characterization of Cd-responsive metal transporter genes in rapeseed (Brassica napus).
    Zhang XD; Meng JG; Zhao KX; Chen X; Yang ZM
    Biometals; 2018 Feb; 31(1):107-121. PubMed ID: 29250721
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vivo monitor oxidative burst induced by Cd2+ stress for the oilseed rape (Brassica napus L.) based on electrochemical microbiosensor.
    Xu Q; Wei F; Wang Z; Yang Q; Zhao YD; Chen H
    Phytochem Anal; 2010; 21(2):192-6. PubMed ID: 19908213
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Induced accumulation of Au, Ag and Cu in Brassica napus grown in a mine tailings with the inoculation of Aspergillus niger and the application of two chemical compounds.
    González-Valdez E; Alarcón A; Ferrera-Cerrato R; Vega-Carrillo HR; Maldonado-Vega M; Salas-Luévano MÁ; Argumedo-Delira R
    Ecotoxicol Environ Saf; 2018 Jun; 154():180-186. PubMed ID: 29475123
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metal accumulation in Lolium perenne and Brassica napus as affected by application of chitosans.
    Kamari A; Pulford ID; Hargreaves JS
    Int J Phytoremediation; 2012 Oct; 14(9):894-907. PubMed ID: 22908653
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil.
    Carrier P; Baryla A; Havaux M
    Planta; 2003 Apr; 216(6):939-50. PubMed ID: 12687361
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative Omics Analysis of
    Courbet G; D'Oria A; Maillard A; Jing L; Pluchon S; Arkoun M; Pateyron S; Paysant Le Roux C; Diquélou S; Ourry A; Trouverie J; Etienne P
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769110
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Contrasting effects of biochar and hydrothermally treated coal gangue on leachability, bioavailability, speciation and accumulation of heavy metals by rapeseed in copper mine tailings.
    Munir MAM; Liu G; Yousaf B; Mian MM; Ali MU; Ahmed R; Cheema AI; Naushad M
    Ecotoxicol Environ Saf; 2020 Mar; 191():110244. PubMed ID: 32004946
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 5-aminolevulinic acid improves salt tolerance mediated by regulation of tetrapyrrole and proline metabolism in Brassica napus L. seedlings under NaCl stress.
    Xiong JL; Wang HC; Tan XY; Zhang CL; Naeem MS
    Plant Physiol Biochem; 2018 Mar; 124():88-99. PubMed ID: 29353686
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Changes in the levels of phytochelatins and related metal-binding peptides in chickpea seedlings exposed to arsenic and different heavy metal ions.
    Gupta DK; Tohoyama H; Joho M; Inouhe M
    J Plant Res; 2004 Jun; 117(3):253-6. PubMed ID: 15098099
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of nitrate pulses on BnNRT1 and BnNRT2 genes: mRNA levels and nitrate influx rates in relation to the duration of N deprivation in Brassica napus L.
    Faure-Rabasse S; Le Deunff E; Lainé P; Macduff JH; Ourry A
    J Exp Bot; 2002 Aug; 53(375):1711-21. PubMed ID: 12147721
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Foliar-applied glutathione activates zinc transport from roots to shoots in oilseed rape.
    Nakamura SI; Wongkaew A; Nakai Y; Rai H; Ohkama-Ohtsu N
    Plant Sci; 2019 Jun; 283():424-434. PubMed ID: 31128714
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synergistic effects of chromium and copper on photosynthetic inhibition, subcellular distribution, and related gene expression in Brassica napus cultivars.
    Li L; Long M; Islam F; Farooq MA; Wang J; Mwamba TM; Shou J; Zhou W
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):11827-11845. PubMed ID: 30820917
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of the inhibitor of the γ-aminobutyrate-transaminase, vinyl-γ-aminobutyrate, on development and nitrogen metabolism in Brassica napus seedlings.
    Deleu C; Faes P; Niogret MF; Bouchereau A
    Plant Physiol Biochem; 2013 Mar; 64():60-9. PubMed ID: 23370302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.