BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 19341471)

  • 1. IgCAMs redundantly control axon navigation in Caenorhabditis elegans.
    Schwarz V; Pan J; Voltmer-Irsch S; Hutter H
    Neural Dev; 2009 Apr; 4():13. PubMed ID: 19341471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and maintenance of neuronal architecture at the ventral midline of C. elegans.
    Hobert O; Bülow H
    Curr Opin Neurobiol; 2003 Feb; 13(1):70-8. PubMed ID: 12593984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MAX-1, a novel PH/MyTH4/FERM domain cytoplasmic protein implicated in netrin-mediated axon repulsion.
    Huang X; Cheng HJ; Tessier-Lavigne M; Jin Y
    Neuron; 2002 May; 34(4):563-76. PubMed ID: 12062040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MADD-2, a homolog of the Opitz syndrome protein MID1, regulates guidance to the midline through UNC-40 in Caenorhabditis elegans.
    Alexander M; Selman G; Seetharaman A; Chan KK; D'Souza SA; Byrne AB; Roy PJ
    Dev Cell; 2010 Jun; 18(6):961-72. PubMed ID: 20627078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Moving around in a worm: netrin UNC-6 and circumferential axon guidance in C. elegans.
    Wadsworth WG
    Trends Neurosci; 2002 Aug; 25(8):423-9. PubMed ID: 12127760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential expression of glutamate receptor subunits in the nervous system of Caenorhabditis elegans and their regulation by the homeodomain protein UNC-42.
    Brockie PJ; Madsen DM; Zheng Y; Mellem J; Maricq AV
    J Neurosci; 2001 Mar; 21(5):1510-22. PubMed ID: 11222641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The netrin receptor UNC-40/DCC stimulates axon attraction and outgrowth through enabled and, in parallel, Rac and UNC-115/AbLIM.
    Gitai Z; Yu TW; Lundquist EA; Tessier-Lavigne M; Bargmann CI
    Neuron; 2003 Jan; 37(1):53-65. PubMed ID: 12526772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic analysis of an overlapping functional requirement for L1- and NCAM-type proteins during sensory axon guidance in Drosophila.
    Kristiansen LV; Velasquez E; Romani S; Baars S; Berezin V; Bock E; Hortsch M; Garcia-Alonso L
    Mol Cell Neurosci; 2005 Jan; 28(1):141-52. PubMed ID: 15607949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The contactin RIG-6 mediates neuronal and non-neuronal cell migration in Caenorhabditis elegans.
    Katidou M; Tavernarakis N; Karagogeos D
    Dev Biol; 2013 Jan; 373(1):184-95. PubMed ID: 23123963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel Eph receptor-interacting IgSF protein provides C. elegans motoneurons with midline guidepost function.
    Boulin T; Pocock R; Hobert O
    Curr Biol; 2006 Oct; 16(19):1871-83. PubMed ID: 17027485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional dissection of the C. elegans cell adhesion molecule SAX-7, a homologue of human L1.
    Pocock R; Bénard CY; Shapiro L; Hobert O
    Mol Cell Neurosci; 2008 Jan; 37(1):56-68. PubMed ID: 17933550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The C. elegans CDK8 Mediator module regulates axon guidance decisions in the ventral nerve cord and during dorsal axon navigation.
    Steimel A; Suh J; Hussainkhel A; Deheshi S; Grants JM; Zapf R; Moerman DG; Taubert S; Hutter H
    Dev Biol; 2013 May; 377(2):385-98. PubMed ID: 23458898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth cones stall and collapse during axon outgrowth in Caenorhabditis elegans.
    Knobel KM; Jorgensen EM; Bastiani MJ
    Development; 1999 Oct; 126(20):4489-98. PubMed ID: 10498684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of spatial and temporal cues that regulate postembryonic expression of axon maintenance factors in the C. elegans ventral nerve cord.
    Aurelio O; Boulin T; Hobert O
    Development; 2003 Feb; 130(3):599-610. PubMed ID: 12490565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The immunoglobulin superfamily protein SYG-1 determines the location of specific synapses in C. elegans.
    Shen K; Bargmann CI
    Cell; 2003 Mar; 112(5):619-30. PubMed ID: 12628183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of longitudinal axon pathways in Caenorhabditis elegans.
    Hutter H
    Semin Cell Dev Biol; 2019 Jan; 85():60-70. PubMed ID: 29141179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic exocytosis and nervous system development impaired in Caenorhabditis elegans unc-13 mutants.
    Maruyama H; Rakow TL; Maruyama IN
    Neuroscience; 2001; 104(2):287-97. PubMed ID: 11377834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Prop1-like homeobox gene
    Berghoff EG; Glenwinkel L; Bhattacharya A; Sun H; Varol E; Mohammadi N; Antone A; Feng Y; Nguyen K; Cook SJ; Wood JF; Masoudi N; Cros CC; Ramadan YH; Ferkey DM; Hall DH; Hobert O
    Elife; 2021 Jun; 10():. PubMed ID: 34165428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunoglobulin-domain proteins required for maintenance of ventral nerve cord organization.
    Aurelio O; Hall DH; Hobert O
    Science; 2002 Jan; 295(5555):686-90. PubMed ID: 11809975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ENU-3 is a novel motor axon outgrowth and guidance protein in C. elegans.
    Yee CS; Sybingco SS; Serdetchania V; Kholkina G; Bueno de Mesquita M; Naqvi Z; Park SH; Lam K; Killeen MT
    Dev Biol; 2011 Apr; 352(2):243-53. PubMed ID: 21295567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.