BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 19342160)

  • 1. Nitrate removal by electro-bioremediation technology in Korean soil.
    Choi JH; Maruthamuthu S; Lee HG; Ha TH; Bae JH
    J Hazard Mater; 2009 Sep; 168(2-3):1208-16. PubMed ID: 19342160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil.
    Kim SH; Han HY; Lee YJ; Kim CW; Yang JW
    Sci Total Environ; 2010 Jul; 408(16):3162-8. PubMed ID: 20452646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of total and nitrate-dissimilating bacteria to reduced N deposition in a spruce forest soil profile.
    Kandeler E; Brune T; Enowashu E; Dörr N; Guggenberger G; Lamersdorf N; Philippot L
    FEMS Microbiol Ecol; 2009 Mar; 67(3):444-54. PubMed ID: 19220860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An electrokinetic/Fe0 permeable reactive barrier system for the treatment of nitrate-contaminated subsurface soils.
    Suzuki T; Oyama Y; Moribe M; Niinae M
    Water Res; 2012 Mar; 46(3):772-8. PubMed ID: 22153957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrokinetic remediation and microbial community shift of β-cyclodextrin-dissolved petroleum hydrocarbon-contaminated soil.
    Wan C; Du M; Lee DJ; Yang X; Ma W; Zheng L
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):2019-25. PubMed ID: 21052991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of electrokinetic remediation of arsenic spiked soil by chemical reagents.
    Yuan C; Chiang TS
    J Hazard Mater; 2008 Mar; 152(1):309-15. PubMed ID: 17697749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of rice root associated nitrate, sulfate and ferric iron reducing bacteria during root decomposition.
    Scheid D; Stubner S; Conrad R
    FEMS Microbiol Ecol; 2004 Nov; 50(2):101-10. PubMed ID: 19712368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of a new electrolyte circulation method for the ex situ electrokinetic bioremediation of a laboratory-prepared pentadecane contaminated kaolinite.
    Kim SJ; Park JY; Lee YJ; Lee JY; Yang JW
    J Hazard Mater; 2005 Feb; 118(1-3):171-6. PubMed ID: 15721541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanisms of arsenic removal from soil by electrokinetic process coupled with iron permeable reaction barrier.
    Yuan C; Chiang TS
    Chemosphere; 2007 Apr; 67(8):1533-42. PubMed ID: 17267020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance.
    Alisi C; Musella R; Tasso F; Ubaldi C; Manzo S; Cremisini C; Sprocati AR
    Sci Total Environ; 2009 Apr; 407(8):3024-32. PubMed ID: 19201450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in nutrient profile of soil subjected to bioleaching for removal of heavy metals using Acidithiobacillus thiooxidans.
    NareshKumar R; Nagendran R
    J Hazard Mater; 2008 Aug; 156(1-3):102-7. PubMed ID: 18206305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ars genotype characterization of arsenic-resistant bacteria from arsenic-contaminated gold-silver mines in the Republic of Korea.
    Chang JS; Kim YH; Kim KW
    Appl Microbiol Biotechnol; 2008 Aug; 80(1):155-65. PubMed ID: 18560832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electro-Fenton, hydrogenotrophic and Fe2+ ions mediated TOC and nitrate removal from aquaculture system: different experimental strategies.
    Virkutyte J; Jegatheesan V
    Bioresour Technol; 2009 Apr; 100(7):2189-97. PubMed ID: 19070482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of electrokinetic soil remediation methods using one fixed anode and approaching anodes.
    Shen Z; Chen X; Jia J; Qu L; Wang W
    Environ Pollut; 2007 Nov; 150(2):193-9. PubMed ID: 17376568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrokinetic remediation of contaminated soil with waste-lubricant oils and zinc.
    Park SW; Lee JY; Yang JS; Kim KJ; Baek K
    J Hazard Mater; 2009 Sep; 169(1-3):1168-72. PubMed ID: 19467778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of nitrobenzene contamination and of bioaugmentation on nitrification and ammonia-oxidizing bacteria in soil.
    Zhao S; Ramette A; Niu GL; Liu H; Zhou NY
    FEMS Microbiol Ecol; 2009 Nov; 70(2):159-67. PubMed ID: 19825042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of nitrate on the performance of single chamber air cathode microbial fuel cells.
    Sukkasem C; Xu S; Park S; Boonsawang P; Liu H
    Water Res; 2008 Dec; 42(19):4743-50. PubMed ID: 18822442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A laboratory feasibility study on electrokinetic injection of nutrients on an organic, tropical, clayey soil.
    Schmidt CA; Barbosa MC; de Almeida Mde S
    J Hazard Mater; 2007 May; 143(3):655-61. PubMed ID: 17360114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of solar cell in electrokinetic remediation of cadmium-contaminated soil.
    Yuan S; Zheng Z; Chen J; Lu X
    J Hazard Mater; 2009 Mar; 162(2-3):1583-7. PubMed ID: 18656308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Bacillus cereus strain from electrokinetically remediated saline soil towards the remediation of crude oil.
    Gao YC; Guo SH; Wang JN; Zhang W; Chen GH; Wang H; Du J; Liu Y; Naidu R
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):26351-26360. PubMed ID: 29981021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.