BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 19342160)

  • 41. Biogeochemical changes induced in uranium mining waste pile samples by uranyl nitrate treatments under anaerobic conditions.
    Geissler A; Merroun M; Geipel G; Reuther H; Selenska-Pobell S
    Geobiology; 2009 Jun; 7(3):282-94. PubMed ID: 19476503
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of critical operational parameters on the circulation-enhanced electrokinetics.
    Chang JH; Liao YC
    J Hazard Mater; 2006 Feb; 129(1-3):186-93. PubMed ID: 16188380
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Degradation of di-butyl-phthalate by soil bacteria.
    Chao WL; Lin CM; Shiung II; Kuo YL
    Chemosphere; 2006 May; 63(8):1377-83. PubMed ID: 16289698
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Chemcial aspects of the energy process in nitrate reduction in different representatives of soil microflora].
    Il'nina TK; Negru-Vode VV; Miller IuM; Kapustin OA; Khodakova RN
    Mikrobiologiia; 1977; 46(6):1034-8. PubMed ID: 600102
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrokinetically enhanced removal and degradation of nitrate in the subsurface using nanosized Pd/Fe slurry.
    Yang GC; Hung CH; Tu HC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jul; 43(8):945-51. PubMed ID: 18569307
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of nitrate, acetate, and hydrogen on native perchlorate-reducing microbial communities and their activity in vadose soil.
    Nozawa-Inoue M; Jien M; Yang K; Rolston DE; Hristova KR; Scow KM
    FEMS Microbiol Ecol; 2011 May; 76(2):278-88. PubMed ID: 21284679
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Solid phase bioremediation of pendimethalin in contaminated soil and evaluation of leaching potential.
    Venkata Mohan S; Rama Krishna M; Muralikrishna P; Shailaja S; Sarma PN
    Bioresour Technol; 2007 Nov; 98(15):2905-10. PubMed ID: 17110100
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Donor-dependent extent of uranium reduction for bioremediation of contaminated sediment microcosms.
    Madden AS; Palumbo AV; Ravel B; Vishnivetskaya TA; Phelps TJ; Schadt CW; Brandt CC
    J Environ Qual; 2009; 38(1):53-60. PubMed ID: 19141795
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Surfactant enhanced electrokinetic remediation of DDT from soils.
    Karagunduz A; Gezer A; Karasuloglu G
    Sci Total Environ; 2007 Oct; 385(1-3):1-11. PubMed ID: 17706747
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surfactant remediation of diesel fuel polluted soil.
    Khalladi R; Benhabiles O; Bentahar F; Moulai-Mostefa N
    J Hazard Mater; 2009 May; 164(2-3):1179-84. PubMed ID: 18977072
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A novel combination of anaerobic bioleaching and electrokinetics for arsenic removal from mine tailing soil.
    Lee KY; Yoon IH; Lee BT; Kim SO; Kim KW
    Environ Sci Technol; 2009 Dec; 43(24):9354-60. PubMed ID: 20000529
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of the phytoremediation potential of four plant species for dibenzofuran-contaminated soil.
    Wang Y; Oyaizu H
    J Hazard Mater; 2009 Sep; 168(2-3):760-4. PubMed ID: 19321258
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrochemical activation of nitrate reduction to nitrogen by Ochrobactrum sp. G3-1 using a noncompartmented electrochemical bioreactor.
    Lee WJ; Park DH
    J Microbiol Biotechnol; 2009 Aug; 19(8):836-44. PubMed ID: 19734723
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Abundance and activity of nitrate reducers in an arable soil are more affected by temporal variation and soil depth than by elevated atmospheric [CO2].
    Marhan S; Philippot L; Bru D; Rudolph S; Franzaring J; Högy P; Fangmeier A; Kandeler E
    FEMS Microbiol Ecol; 2011 May; 76(2):209-19. PubMed ID: 21223340
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microbial nitrate respiration--genes, enzymes and environmental distribution.
    Kraft B; Strous M; Tegetmeyer HE
    J Biotechnol; 2011 Aug; 155(1):104-17. PubMed ID: 21219945
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nitrate removal by microbial enhancement in a riparian wetland.
    Pei Y; Yang Z; Tian B
    Bioresour Technol; 2010 Jul; 101(14):5712-8. PubMed ID: 20202829
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Laboratory scale bioremediation of diesel hydrocarbon in soil by indigenous bacterial consortium.
    Sharma A; Rehman MB
    Indian J Exp Biol; 2009 Sep; 47(9):766-9. PubMed ID: 19957891
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of bioremediation methods for the treatment of soil contaminated with explosives in Louisiana Army Ammunition Plant, Minden, Louisiana.
    Clark B; Boopathy R
    J Hazard Mater; 2007 May; 143(3):643-8. PubMed ID: 17289260
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag.
    Chai L; Huang S; Yang Z; Peng B; Huang Y; Chen Y
    J Hazard Mater; 2009 Aug; 167(1-3):516-22. PubMed ID: 19246154
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrokinetic remediation of fluorine-contaminated soil: conditioning of anolyte.
    Kim DH; Jeon CS; Baek K; Ko SH; Yang JS
    J Hazard Mater; 2009 Jan; 161(1):565-9. PubMed ID: 18462872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.