These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 19342351)

  • 1. Fast and efficient strategies for model selection of Gaussian support vector machine.
    Xu Z; Dai M; Meng D
    IEEE Trans Syst Man Cybern B Cybern; 2009 Oct; 39(5):1292-307. PubMed ID: 19342351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An SMO algorithm for the potential support vector machine.
    Knebel T; Hochreiter S; Obermayer K
    Neural Comput; 2008 Jan; 20(1):271-87. PubMed ID: 18045009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two criteria for model selection in multiclass support vector machines.
    Wang L; Xue P; Chan KL
    IEEE Trans Syst Man Cybern B Cybern; 2008 Dec; 38(6):1432-48. PubMed ID: 19022717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymptotic behaviors of support vector machines with Gaussian kernel.
    Keerthi SS; Lin CJ
    Neural Comput; 2003 Jul; 15(7):1667-89. PubMed ID: 12816571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ESVM: evolutionary support vector machine for automatic feature selection and classification of microarray data.
    Huang HL; Chang FL
    Biosystems; 2007; 90(2):516-28. PubMed ID: 17280775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A practical approach to model selection for support vector machines with a Gaussian kernel.
    Varewyck M; Martens JP
    IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):330-40. PubMed ID: 20699214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic subset selection for learning with kernel machines.
    Rhinelander J; Liu XP
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):616-26. PubMed ID: 22049369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Support vector machines for dyadic data.
    Hochreiter S; Obermayer K
    Neural Comput; 2006 Jun; 18(6):1472-510. PubMed ID: 16764511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian framework for least-squares support vector machine classifiers, gaussian processes, and kernel Fisher discriminant analysis.
    Van Gestel T; Suykens JA; Lanckriet G; Lambrechts A; De Moor B; Vandewalle J
    Neural Comput; 2002 May; 14(5):1115-47. PubMed ID: 11972910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated scheme for feature selection and parameter setting in the support vector machine modeling and its application to the prediction of pharmacokinetic properties of drugs.
    Yang SY; Huang Q; Li LL; Ma CY; Zhang H; Bai R; Teng QZ; Xiang ML; Wei YQ
    Artif Intell Med; 2009 Jun; 46(2):155-63. PubMed ID: 18701266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kernel machines for epilepsy diagnosis via EEG signal classification: a comparative study.
    Lima CA; Coelho AL
    Artif Intell Med; 2011 Oct; 53(2):83-95. PubMed ID: 21852077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radial basis function network-based transform for a nonlinear support vector machine as optimized by a particle swarm optimization algorithm with application to QSAR studies.
    Tang LJ; Zhou YP; Jiang JH; Zou HY; Wu HL; Shen GL; Yu RQ
    J Chem Inf Model; 2007; 47(4):1438-45. PubMed ID: 17555309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radius margin bounds for support vector machines with the RBF kernel.
    Chung KM; Kao WC; Sun CL; Wang LL; Lin CJ
    Neural Comput; 2003 Nov; 15(11):2643-81. PubMed ID: 14577857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multivariate calibration with least-squares support vector machines.
    Thissen U; Ustün B; Melssen WJ; Buydens LM
    Anal Chem; 2004 Jun; 76(11):3099-105. PubMed ID: 15167788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum optimization for training support vector machines.
    Anguita D; Ridella S; Rivieccio F; Zunino R
    Neural Netw; 2003; 16(5-6):763-70. PubMed ID: 12850032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation-based sparse Gaussian process classifier design.
    Shevade S; Sundararajan S
    Neural Comput; 2009 Jul; 21(7):2082-103. PubMed ID: 19292648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SVMs modeling for highly imbalanced classification.
    Tang Y; Zhang YQ; Chawla NV; Krasser S
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):281-8. PubMed ID: 19068445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel kernel-based maximum a posteriori classification method.
    Xu Z; Huang K; Zhu J; King I; Lyu MR
    Neural Netw; 2009 Sep; 22(7):977-87. PubMed ID: 19167865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Second-order SMO improves SVM online and active learning.
    Glasmachers T; Igel C
    Neural Comput; 2008 Feb; 20(2):374-82. PubMed ID: 18045012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate on-line ν-support vector learning.
    Gu B; Wang JD; Yu YC; Zheng GS; Huang YF; Xu T
    Neural Netw; 2012 Mar; 27():51-9. PubMed ID: 22057091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.