BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 19342380)

  • 1. Glutamate binding and conformational flexibility of ligand-binding domains are critical early determinants of efficient kainate receptor biogenesis.
    Gill MB; Vivithanaporn P; Swanson GT
    J Biol Chem; 2009 May; 284(21):14503-12. PubMed ID: 19342380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand binding is a critical requirement for plasma membrane expression of heteromeric kainate receptors.
    Valluru L; Xu J; Zhu Y; Yan S; Contractor A; Swanson GT
    J Biol Chem; 2005 Feb; 280(7):6085-93. PubMed ID: 15583001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamate receptor trafficking: endoplasmic reticulum quality control involves ligand binding and receptor function.
    Mah SJ; Cornell E; Mitchell NA; Fleck MW
    J Neurosci; 2005 Mar; 25(9):2215-25. PubMed ID: 15745947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly and Trafficking of Homomeric and Heteromeric Kainate Receptors with Impaired Ligand Binding Sites.
    Scholefield CL; Atlason PT; Jane DE; Molnár E
    Neurochem Res; 2019 Mar; 44(3):585-599. PubMed ID: 30302614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlating efficacy and desensitization with GluK2 ligand-binding domain movements.
    Nayeem N; Mayans O; Green T
    Open Biol; 2013 May; 3(5):130051. PubMed ID: 23720540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Conformational Variability in the GluK2 Kainate Receptor Ligand-Binding Domain.
    Wied TJ; Chin AC; Lau AY
    Structure; 2019 Jan; 27(1):189-195.e2. PubMed ID: 30482727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligomerization in the endoplasmic reticulum and intracellular trafficking of kainate receptors are subunit-dependent but not editing-dependent.
    Ma-Högemeier ZL; Körber C; Werner M; Racine D; Muth-Köhne E; Tapken D; Hollmann M
    J Neurochem; 2010 Jun; 113(6):1403-15. PubMed ID: 20050975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agonist binding to the GluK5 subunit is sufficient for functional surface expression of heteromeric GluK2/GluK5 kainate receptors.
    Fisher JL; Housley PR
    Cell Mol Neurobiol; 2013 Nov; 33(8):1099-108. PubMed ID: 23975096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of the GluR5 and GluR6 ligand binding cores: molecular mechanisms underlying kainate receptor selectivity.
    Mayer ML
    Neuron; 2005 Feb; 45(4):539-52. PubMed ID: 15721240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Domain organization and function in GluK2 subtype kainate receptors.
    Das U; Kumar J; Mayer ML; Plested AJ
    Proc Natl Acad Sci U S A; 2010 May; 107(18):8463-8. PubMed ID: 20404149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand-binding characteristics and related structural features of the expressed goldfish kainate receptors: identification of a conserved disulfide bond and three residues important for ligand binding.
    Wo ZG; Oswald RE
    Mol Pharmacol; 1996 Oct; 50(4):770-80. PubMed ID: 8863821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interface interactions modulating desensitization of the kainate-selective ionotropic glutamate receptor subunit GluR6.
    Zhang Y; Nayeem N; Nanao MH; Green T
    J Neurosci; 2006 Sep; 26(39):10033-42. PubMed ID: 17005866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and Affinity of Two Bicyclic Glutamate Analogues at AMPA and Kainate Receptors.
    Møllerud S; Pinto A; Marconi L; Frydenvang K; Thorsen TS; Laulumaa S; Venskutonytė R; Winther S; Moral AMC; Tamborini L; Conti P; Pickering DS; Kastrup JS
    ACS Chem Neurosci; 2017 Sep; 8(9):2056-2064. PubMed ID: 28691798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Validation of Heteromeric Kainate Receptor Models.
    Paramo T; Brown PMGE; Musgaard M; Bowie D; Biggin PC
    Biophys J; 2017 Nov; 113(10):2173-2177. PubMed ID: 28935133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational flexibility of the ligand-binding domain dimer in kainate receptor gating and desensitization.
    Nayeem N; Mayans O; Green T
    J Neurosci; 2011 Feb; 31(8):2916-24. PubMed ID: 21414913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular trafficking of KA2 kainate receptors mediated by interactions with coatomer protein complex I (COPI) and 14-3-3 chaperone systems.
    Vivithanaporn P; Yan S; Swanson GT
    J Biol Chem; 2006 Jun; 281(22):15475-84. PubMed ID: 16595684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A C-terminal determinant of GluR6 kainate receptor trafficking.
    Yan S; Sanders JM; Xu J; Zhu Y; Contractor A; Swanson GT
    J Neurosci; 2004 Jan; 24(3):679-91. PubMed ID: 14736854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations to the kainate receptor subunit GluR6 binding pocket that selectively affect domoate binding.
    Zhang Y; Nayeem N; Green T
    Mol Pharmacol; 2008 Oct; 74(4):1163-9. PubMed ID: 18664604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full domain closure of the ligand-binding core of the ionotropic glutamate receptor iGluR5 induced by the high affinity agonist dysiherbaine and the functional antagonist 8,9-dideoxyneodysiherbaine.
    Frydenvang K; Lash LL; Naur P; Postila PA; Pickering DS; Smith CM; Gajhede M; Sasaki M; Sakai R; Pentikaïnen OT; Swanson GT; Kastrup JS
    J Biol Chem; 2009 May; 284(21):14219-29. PubMed ID: 19297335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential trafficking of GluR7 kainate receptor subunit splice variants.
    Jaskolski F; Normand E; Mulle C; Coussen F
    J Biol Chem; 2005 Jun; 280(24):22968-76. PubMed ID: 15805114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.