BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 19342769)

  • 1. Robust mechanisms of ventral furrow invagination require the combination of cellular shape changes.
    Conte V; Muñoz JJ; Baum B; Miodownik M
    Phys Biol; 2009 Apr; 6(1):016010. PubMed ID: 19342769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biomechanical analysis of ventral furrow formation in the Drosophila melanogaster embryo.
    Conte V; Ulrich F; Baum B; Muñoz J; Veldhuis J; Brodland W; Miodownik M
    PLoS One; 2012; 7(4):e34473. PubMed ID: 22511944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 3D finite element model of ventral furrow invagination in the Drosophila melanogaster embryo.
    Conte V; Muñoz JJ; Miodownik M
    J Mech Behav Biomed Mater; 2008 Apr; 1(2):188-98. PubMed ID: 19627783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive mechanical forces control cell-shape change during Drosophila ventral furrow formation.
    Polyakov O; He B; Swan M; Shaevitz JW; Kaschube M; Wieschaus E
    Biophys J; 2014 Aug; 107(4):998-1010. PubMed ID: 25140436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volume conservation principle involved in cell lengthening and nucleus movement during tissue morphogenesis.
    Gelbart MA; He B; Martin AC; Thiberge SY; Wieschaus EF; Kaschube M
    Proc Natl Acad Sci U S A; 2012 Nov; 109(47):19298-303. PubMed ID: 23134725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deformation gradient decomposition method for the analysis of the mechanics of morphogenesis.
    Muñoz JJ; Barrett K; Miodownik M
    J Biomech; 2007; 40(6):1372-80. PubMed ID: 16814298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell shape change and invagination of the cephalic furrow involves reorganization of F-actin.
    Spencer AK; Siddiqui BA; Thomas JH
    Dev Biol; 2015 Jun; 402(2):192-207. PubMed ID: 25929228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrete Mesh Approach in Morphogenesis Modelling: the Example of Gastrulation.
    Demongeot J; Lontos A; Promayon E
    Acta Biotheor; 2016 Dec; 64(4):427-446. PubMed ID: 27853896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cell polarity determinant Dlg1 facilitates epithelial invagination by promoting tissue-scale mechanical coordination.
    Fuentes MA; He B
    Development; 2022 Mar; 149(6):. PubMed ID: 35302584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drosophila gastrulation: analysis of cell shape changes in living embryos by three-dimensional fluorescence microscopy.
    Kam Z; Minden JS; Agard DA; Sedat JW; Leptin M
    Development; 1991 Jun; 112(2):365-70. PubMed ID: 1794308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for a Role of the Lateral Ectoderm in
    Guo H; Huang S; He B
    Front Cell Dev Biol; 2022; 10():867438. PubMed ID: 35547820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial regulation of contractility by Neuralized and Bearded during furrow invagination in Drosophila.
    Perez-Mockus G; Mazouni K; Roca V; Corradi G; Conte V; Schweisguth F
    Nat Commun; 2017 Nov; 8(1):1594. PubMed ID: 29150614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apical constriction drives tissue-scale hydrodynamic flow to mediate cell elongation.
    He B; Doubrovinski K; Polyakov O; Wieschaus E
    Nature; 2014 Apr; 508(7496):392-6. PubMed ID: 24590071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Embryo-scale epithelial buckling forms a propagating furrow that initiates gastrulation.
    Fierling J; John A; Delorme B; Torzynski A; Blanchard GB; Lye CM; Popkova A; Malandain G; Sanson B; Étienne J; Marmottant P; Quilliet C; Rauzi M
    Nat Commun; 2022 Jun; 13(1):3348. PubMed ID: 35688832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrated vertex model of the mesoderm invagination during the embryonic development of Drosophila.
    Jiang J; Aegerter CM
    J Theor Biol; 2023 Sep; 572():111581. PubMed ID: 37481232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell shape changes during gastrulation in Drosophila.
    Leptin M; Grunewald B
    Development; 1990 Sep; 110(1):73-84. PubMed ID: 2081472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical feedback and robustness of apical constrictions in Drosophila embryo ventral furrow formation.
    Holcomb MC; Gao GJ; Servati M; Schneider D; McNeely PK; Thomas JH; Blawzdziewicz J
    PLoS Comput Biol; 2021 Jul; 17(7):e1009173. PubMed ID: 34228708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A vertex model of Drosophila ventral furrow formation.
    Spahn P; Reuter R
    PLoS One; 2013; 8(9):e75051. PubMed ID: 24066163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanics of cephalic furrow formation in the Drosophila embryo.
    Niloy RA; Holcomb MC; Thomas JH; Blawzdziewicz J
    Biophys J; 2023 Oct; 122(19):3843-3859. PubMed ID: 37571824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gastrulation in Drosophila: the formation of the ventral furrow and posterior midgut invaginations.
    Sweeton D; Parks S; Costa M; Wieschaus E
    Development; 1991 Jul; 112(3):775-89. PubMed ID: 1935689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.