These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 19342800)

  • 1. Fluid flow pattern and water residence time in waste stabilisation ponds.
    Badrot-Nico F; Guinot V; Brissaud F
    Water Sci Technol; 2009; 59(6):1061-8. PubMed ID: 19342800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Taking wind into account in the design of waste stabilisation ponds.
    Badrot-Nico F; Guinot V; Brissaud F
    Water Sci Technol; 2010; 61(4):937-44. PubMed ID: 20182072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixing and its impact on faecal coliform removal in a stabilisation pond.
    Brissaud F; Tournoud MG; Drakides C; Lazarova V
    Water Sci Technol; 2003; 48(2):75-80. PubMed ID: 14510196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiling and modelling of thermal changes in a large waste stabilisation pond.
    Sweeney DG; Nixon JB; Cromar NJ; Fallowfield HJ
    Water Sci Technol; 2005; 51(12):163-72. PubMed ID: 16114679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The development and calibration of a physical model to assist in optimising the hydraulic performance and design of maturation ponds.
    Aldana GJ; Lloyd BJ; Guganesharajah K; Bracho N
    Water Sci Technol; 2005; 51(12):173-81. PubMed ID: 16114680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variations in BOD, algal biomass and organic matter biodegradation constants in a wind-mixed tropical facultative waste stabilization pond.
    Meneses CG; Saraiva LB; Melo HN; de Melo JL; Pearson HW
    Water Sci Technol; 2005; 51(12):183-90. PubMed ID: 16114681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of thermal stratification on the hydraulic behavior of waste stabilization ponds.
    Kellner E; Pires EC
    Water Sci Technol; 2002; 45(1):41-8. PubMed ID: 11833731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate change impacts on activated sludge wastewater treatment: a case study from Norway.
    Plósz BG; Liltved H; Ratnaweera H
    Water Sci Technol; 2009; 60(2):533-41. PubMed ID: 19633397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The spatial significance of water quality indicators in waste stabilization ponds--limitations of residence time distribution analysis in predicting treatment efficiency.
    Sweeney DG; Cromar NJ; Nixon JB; Ta CT; Fallowfield HJ
    Water Sci Technol; 2003; 48(2):211-8. PubMed ID: 14510213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sedimentary microbial oxygen demand for laminar flow over a sediment bed of finite length.
    Higashino M; Stefan HG
    Water Res; 2005 Sep; 39(14):3153-66. PubMed ID: 16054191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of pond velocities using dye and small drogues: a case study of the Nelson City waste stabilisation pond.
    Barter PJ
    Water Sci Technol; 2003; 48(2):145-51. PubMed ID: 14510205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing hydraulic short-circuiting in maturation ponds to maximize pathogen removal using channels and wind breaks.
    Lloyd BJ; Vorkas CA; Guganesharajah RK
    Water Sci Technol; 2003; 48(2):153-62. PubMed ID: 14510206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computer simulation of the oxygen balance in a cold climate winter storage WSP during the critical spring warm-up period.
    Banks CJ; Koloskov GB; Lock AC; Heaven S
    Water Sci Technol; 2003; 48(2):189-96. PubMed ID: 14510210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of guidelines for improved hydraulic design of waste stabilisation ponds.
    Shilton A; Harrison J
    Water Sci Technol; 2003; 48(2):173-80. PubMed ID: 14510208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A compartmental model to describe hydraulics in a full-scale waste stabilization pond.
    Alvarado A; Vedantam S; Goethals P; Nopens I
    Water Res; 2012 Feb; 46(2):521-30. PubMed ID: 22137448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of coliform decay within a CFD (computational fluid dynamic) model of a waste stabilisation pond.
    Shilton A; Harrison J
    Water Sci Technol; 2003; 48(2):205-10. PubMed ID: 14510212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermo-tolerant coliform bacteria decay rates in a full scale waste stabilization pond system in northeast Brazil.
    Macedo SL; Araújo AL; Pearson HW
    Water Sci Technol; 2011; 63(6):1321-6. PubMed ID: 21436574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A practical model for sunlight disinfection of a subtropical maturation pond.
    Dahl NW; Woodfield PL; Lemckert CJ; Stratton H; Roiko A
    Water Res; 2017 Jan; 108():151-159. PubMed ID: 27871746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variable photosynthetic characteristics in waste stabilisation ponds.
    Weatherell CA; Elliott DJ; Fallowfield HJ; Curtis TP
    Water Sci Technol; 2003; 48(2):219-26. PubMed ID: 14510214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between first-order decay coefficients in ponds, for plug flow, CSTR and dispersed flow regimes.
    von SM
    Water Sci Technol; 2002; 45(1):17-24. PubMed ID: 11833729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.