These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 19343257)
1. Synthesis and biological evaluation of multivalent carbohydrate ligands obtained by click assembly of pseudo-rotaxanes. Chwalek M; Auzély R; Fort S Org Biomol Chem; 2009 Apr; 7(8):1680-8. PubMed ID: 19343257 [TBL] [Abstract][Full Text] [Related]
2. Face-selective [2]- and [3]rotaxanes: kinetic control of the threading direction of cyclodextrins. Oshikiri T; Takashima Y; Yamaguchi H; Harada A Chemistry; 2007; 13(25):7091-8. PubMed ID: 17563911 [TBL] [Abstract][Full Text] [Related]
3. Relative rotational motion between alpha-Cyclodextrin Derivatives and a stiff axle molecule. Nishimura D; Oshikiri T; Takashima Y; Hashidzume A; Yamaguchi H; Harada A J Org Chem; 2008 Apr; 73(7):2496-502. PubMed ID: 18336039 [TBL] [Abstract][Full Text] [Related]
4. Ligand accessibility to receptor binding sites enhanced by movable polyrotaxanes. Hyun H; Yui N Macromol Biosci; 2011 Jun; 11(6):765-71. PubMed ID: 21384556 [TBL] [Abstract][Full Text] [Related]
5. Separated and aligned molecular fibres in solid state self-assemblies of cyclodextrin [2]rotaxanes. Onagi H; Carrozzini B; Cascarano GL; Easton CJ; Edwards AJ; Lincoln SF; Rae AD Chemistry; 2003 Dec; 9(24):5971-7. PubMed ID: 14679509 [TBL] [Abstract][Full Text] [Related]
6. Light-switchable Janus [2]rotaxanes based on α-cyclodextrin derivatives bearing two recognition sites linked with oligo(ethylene glycol). Li S; Taura D; Hashidzume A; Harada A Chem Asian J; 2010 Oct; 5(10):2281-9. PubMed ID: 20669215 [TBL] [Abstract][Full Text] [Related]
7. Installation of a ratchet tooth and pawl to restrict rotation in a cyclodextrin rotaxane. Onagi H; Blake CJ; Easton CJ; Lincoln SF Chemistry; 2003 Dec; 9(24):5978-88. PubMed ID: 14679510 [TBL] [Abstract][Full Text] [Related]
8. The synthesis of a multiblock osteotropic polyrotaxane by copper(I)-catalyzed huisgen 1,3-dipolar cycloaddition. Hein CD; Liu XM; Chen F; Cullen DM; Wang D Macromol Biosci; 2010 Dec; 10(12):1544-56. PubMed ID: 20954201 [TBL] [Abstract][Full Text] [Related]
9. Molecular puzzle ring: pseudo[1]rotaxane from a flexible cyclodextrin derivative. Miyawaki A; Kuad P; Takashima Y; Yamaguchi H; Harada A J Am Chem Soc; 2008 Dec; 130(50):17062-9. PubMed ID: 19053429 [TBL] [Abstract][Full Text] [Related]
10. Supramolecular Polypseudorotaxanes composed of star-shaped porphyrin-cored poly(epsilon-caprolactone) and alpha-cyclodextrin. Dai XH; Dong CM; Fa HB; Yan D; Wei Y Biomacromolecules; 2006 Dec; 7(12):3527-33. PubMed ID: 17154484 [TBL] [Abstract][Full Text] [Related]
11. Structural Analysis and Inclusion Mechanism of Native and Permethylated α-Cyclodextrin-Based Rotaxanes Containing Alkylene Axles. Akae Y; Koyama Y; Sogawa H; Hayashi Y; Kawauchi S; Kuwata S; Takata T Chemistry; 2016 Apr; 22(15):5335-41. PubMed ID: 26914705 [TBL] [Abstract][Full Text] [Related]
12. The foundation of a light driven molecular muscle based on stilbene and alpha-cyclodextrin. Dawson RE; Lincoln SF; Easton CJ Chem Commun (Camb); 2008 Sep; (34):3980-2. PubMed ID: 18758599 [TBL] [Abstract][Full Text] [Related]
13. A self-assembled multivalent pseudopolyrotaxane for binding galectin-1. Nelson A; Belitsky JM; Vidal S; Joiner CS; Baum LG; Stoddart JF J Am Chem Soc; 2004 Sep; 126(38):11914-22. PubMed ID: 15382926 [TBL] [Abstract][Full Text] [Related]
14. Multimeric lactoside "click clusters" as tools to investigate the effect of linker length in specific interactions with peanut lectin, galectin-1, and -3. Gouin SG; García Fernández JM; Vanquelef E; Dupradeau FY; Salomonsson E; Leffler H; Ortega-Muñoz M; Nilsson UJ; Kovensky J Chembiochem; 2010 Jul; 11(10):1430-42. PubMed ID: 20549756 [TBL] [Abstract][Full Text] [Related]
15. Mono-, di-, or triazidated cyclodextrin-based polyrotaxanes for facile and efficient functionalization via click chemistry. Hyun H; Yui N Macromol Rapid Commun; 2011 Feb; 32(3):326-31. PubMed ID: 21433179 [TBL] [Abstract][Full Text] [Related]
16. Preparation of beta-cyclodextrin polyrotaxane: photodimerization of pseudo-polyrotaxane with 2-anthryl and triphenylmethyl groups at the ends of poly(propylene glycol). Okada M; Harada A Org Lett; 2004 Feb; 6(3):361-4. PubMed ID: 14748593 [TBL] [Abstract][Full Text] [Related]
17. Switching from altro-alpha-cyclodextrin dimer to pseudo[1]rotaxane dimer through tumbling. Yamauchi K; Miyawaki A; Takashima Y; Yamaguchi H; Harada A Org Lett; 2010 Mar; 12(6):1284-6. PubMed ID: 20180513 [TBL] [Abstract][Full Text] [Related]
18. Preparation of alpha-cyclodextrin-terminated polyrotaxane consisting of beta-cyclodextrins and pluronic as a building block of a biodegradable network. Ooya T; Ito A; Yui N Macromol Biosci; 2005 May; 5(5):379-83. PubMed ID: 15895475 [TBL] [Abstract][Full Text] [Related]
19. Unraveling unidirectional threading of α-cyclodextrin in a [2]rotaxane through spin labeling approach. Casati C; Franchi P; Pievo R; Mezzina E; Lucarini M J Am Chem Soc; 2012 Nov; 134(46):19108-17. PubMed ID: 23106205 [TBL] [Abstract][Full Text] [Related]
20. Supramolecular design for multivalent interaction: maltose mobility along polyrotaxane enhanced binding with concanavalin A. Ooya T; Eguchi M; Yui N J Am Chem Soc; 2003 Oct; 125(43):13016-7. PubMed ID: 14570461 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]