BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1934341)

  • 1. Role of ATP-sensitive potassium channels in coronary microvascular autoregulatory responses.
    Komaru T; Lamping KG; Eastham CL; Dellsperger KC
    Circ Res; 1991 Oct; 69(4):1146-51. PubMed ID: 1934341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of ATP-sensitive potassium channels in regulating coronary microcirculation.
    Komaru T; Kanatsuka H; Dellsperger K; Takishima T
    Biorheology; 1993; 30(5-6):371-80. PubMed ID: 8186403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coronary microvascular responses to reductions in perfusion pressure. Evidence for persistent arteriolar vasomotor tone during coronary hypoperfusion.
    Chilian WM; Layne SM
    Circ Res; 1990 May; 66(5):1227-38. PubMed ID: 2335023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-sensitive K+ channels mediate dilatation of cerebral arterioles during hypoxia.
    Taguchi H; Heistad DD; Kitazono T; Faraci FM
    Circ Res; 1994 May; 74(5):1005-8. PubMed ID: 8156623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glibenclamide, a putative ATP-sensitive K+ channel blocker, inhibits coronary autoregulation in anesthetized dogs.
    Narishige T; Egashira K; Akatsuka Y; Katsuda Y; Numaguchi K; Sakata M; Takeshita A
    Circ Res; 1993 Oct; 73(4):771-6. PubMed ID: 8370126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of ATP-sensitive potassium channels in brain stem circulation during hypotension.
    Toyoda K; Fujii K; Ibayashi S; Kitazono T; Nagao T; Fujishima M
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1342-6. PubMed ID: 9321824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs.
    Gross GJ; Auchampach JA
    Circ Res; 1992 Feb; 70(2):223-33. PubMed ID: 1310443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelial ATP-sensitive potassium channels mediate coronary microvascular dilation to hyperosmolarity.
    Ishizaka H; Kuo L
    Am J Physiol; 1997 Jul; 273(1 Pt 2):H104-12. PubMed ID: 9249480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of adenosine in vasodilation of epimyocardial coronary microvessels during reduction in perfusion pressure.
    Komaru T; Lamping KG; Dellsperger KC
    J Cardiovasc Pharmacol; 1994 Sep; 24(3):434-42. PubMed ID: 7528300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of coronary microvascular dilation induced by the activation of pertussis toxin-sensitive G proteins are vessel-size dependent. Heterogeneous involvement of nitric oxide pathway and ATP-sensitive K+ channels.
    Komaru T; Tanikawa T; Sugimura A; Kumagai T; Sato K; Kanatsuka H; Shirato K
    Circ Res; 1997 Jan; 80(1):1-10. PubMed ID: 8978316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenosine potentiates flow-induced dilation of coronary arterioles by activating KATP channels in endothelium.
    Kuo L; Chancellor JD
    Am J Physiol; 1995 Aug; 269(2 Pt 2):H541-9. PubMed ID: 7653618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pertussis toxin-sensitive G protein mediates coronary microvascular control during autoregulation and ischemia in canine heart.
    Komaru T; Wang Y; Akai K; Sato K; Sekiguchi N; Sugimura A; Kumagai T; Kanatsuka H; Shirato K
    Circ Res; 1994 Sep; 75(3):556-66. PubMed ID: 7914838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneous changes in epimyocardial microvascular size during graded coronary stenosis. Evidence of the microvascular site for autoregulation.
    Kanatsuka H; Lamping KG; Eastham CL; Marcus ML
    Circ Res; 1990 Feb; 66(2):389-96. PubMed ID: 2297810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of K+ ATP channels and adenosine in the regulation of coronary blood flow during exercise with normal and restricted coronary blood flow.
    Duncker DJ; van Zon NS; Ishibashi Y; Bache RJ
    J Clin Invest; 1996 Feb; 97(4):996-1009. PubMed ID: 8613554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impaired microvascular response to graded coronary occlusion in diabetic and hyperglycemic dogs.
    Kersten JR; Brooks LA; Dellsperger KC
    Am J Physiol; 1995 Apr; 268(4 Pt 2):H1667-74. PubMed ID: 7733369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of NO and K(+)(ATP) channels in adenosine-induced vasodilation on in vivo canine subendocardial arterioles.
    Yada T; Hiramatsu O; Tachibana H; Toyota E; Kajiya F
    Am J Physiol; 1999 Nov; 277(5):H1931-9. PubMed ID: 10564149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. K+ATP channels and adenosine are not necessary for coronary autoregulation.
    Stepp DW; Kroll K; Feigl EO
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1299-308. PubMed ID: 9321819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebral vasodilation during hypercapnia. Role of glibenclamide-sensitive potassium channels and nitric oxide.
    Faraci FM; Breese KR; Heistad DD
    Stroke; 1994 Aug; 25(8):1679-83. PubMed ID: 8042220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of ATP-sensitive potassium channels in the basilar artery.
    Faraci FM; Heistad DD
    Am J Physiol; 1993 Jan; 264(1 Pt 2):H8-13. PubMed ID: 8430866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of coronary microvascular responses to metabolic stimulation.
    Embrey RP; Brooks LA; Dellsperger KC
    Cardiovasc Res; 1997 Jul; 35(1):148-57. PubMed ID: 9302359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.