These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 19343455)
1. A 3D motile rod-shaped monotrichous bacterial model. Hsu CY; Dillon R Bull Math Biol; 2009 Jul; 71(5):1228-63. PubMed ID: 19343455 [TBL] [Abstract][Full Text] [Related]
2. A study of bacterial flagellar bundling. Flores H; Lobaton E; Méndez-Diez S; Tlupova S; Cortez R Bull Math Biol; 2005 Jan; 67(1):137-68. PubMed ID: 15691543 [TBL] [Abstract][Full Text] [Related]
3. Instabilities of a rotating helical rod in a viscous fluid. Park Y; Kim Y; Ko W; Lim S Phys Rev E; 2017 Feb; 95(2-1):022410. PubMed ID: 28297972 [TBL] [Abstract][Full Text] [Related]
4. Modeling polymorphic transformation of rotating bacterial flagella in a viscous fluid. Ko W; Lim S; Lee W; Kim Y; Berg HC; Peskin CS Phys Rev E; 2017 Jun; 95(6-1):063106. PubMed ID: 28709256 [TBL] [Abstract][Full Text] [Related]
5. Numerical exploration on buckling instability for directional control in flagellar propulsion. Huang W; Jawed MK Soft Matter; 2020 Jan; 16(3):604-613. PubMed ID: 31872849 [TBL] [Abstract][Full Text] [Related]
6. Fluid-mechanical interaction of flexible bacterial flagella by the immersed boundary method. Lim S; Peskin CS Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036307. PubMed ID: 22587180 [TBL] [Abstract][Full Text] [Related]
7. The efficiency of propulsion by a rotating flagellum. Purcell EM Proc Natl Acad Sci U S A; 1997 Oct; 94(21):11307-11. PubMed ID: 9326605 [TBL] [Abstract][Full Text] [Related]
8. Hydrodynamic interactions between two swimming bacteria. Ishikawa T; Sekiya G; Imai Y; Yamaguchi T Biophys J; 2007 Sep; 93(6):2217-25. PubMed ID: 17496014 [TBL] [Abstract][Full Text] [Related]
9. Effects of geometric parameters on swimming of micro organisms with single helical flagellum in circular channels. Acemoglu A; Yesilyurt S Biophys J; 2014 Apr; 106(7):1537-47. PubMed ID: 24703315 [TBL] [Abstract][Full Text] [Related]
10. A microscale model of bacterial swimming, chemotaxis and substrate transport. Dillon R; Fauci L; Gaver D J Theor Biol; 1995 Dec; 177(4):325-40. PubMed ID: 8871472 [TBL] [Abstract][Full Text] [Related]
11. Swimming of peritrichous bacteria is enabled by an elastohydrodynamic instability. Riley EE; Das D; Lauga E Sci Rep; 2018 Jul; 8(1):10728. PubMed ID: 30013040 [TBL] [Abstract][Full Text] [Related]
12. Species-dependent hydrodynamics of flagellum-tethered bacteria in early biofilm development. Bennett RR; Lee CK; De Anda J; Nealson KH; Yildiz FH; O'Toole GA; Wong GC; Golestanian R J R Soc Interface; 2016 Feb; 13(115):20150966. PubMed ID: 26864892 [TBL] [Abstract][Full Text] [Related]
13. Dynamic instability in the hook-flagellum system that triggers bacterial flicks. Jabbarzadeh M; Fu HC Phys Rev E; 2018 Jan; 97(1-1):012402. PubMed ID: 29448321 [TBL] [Abstract][Full Text] [Related]
14. Torque and switching in the bacterial flagellar motor. An electrostatic model. Berry RM Biophys J; 1993 Apr; 64(4):961-73. PubMed ID: 7684268 [TBL] [Abstract][Full Text] [Related]
17. Helical and rod-shaped bacteria swim in helical trajectories with little additional propulsion from helical shape. Constantino MA; Jabbarzadeh M; Fu HC; Bansil R Sci Adv; 2016 Nov; 2(11):e1601661. PubMed ID: 28138539 [TBL] [Abstract][Full Text] [Related]
18. Fluid mechanics of swimming bacteria with multiple flagella. Kanehl P; Ishikawa T Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042704. PubMed ID: 24827275 [TBL] [Abstract][Full Text] [Related]
19. The shape and dynamics of the Leptospiraceae. Kan W; Wolgemuth CW Biophys J; 2007 Jul; 93(1):54-61. PubMed ID: 17434949 [TBL] [Abstract][Full Text] [Related]
20. Bacteria exploit a polymorphic instability of the flagellar filament to escape from traps. Kühn MJ; Schmidt FK; Eckhardt B; Thormann KM Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6340-6345. PubMed ID: 28559324 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]