These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 19343502)

  • 1. Automated, serum-free production of CTX0E03: a therapeutic clinical grade human neural stem cell line.
    Thomas RJ; Hope AD; Hourd P; Baradez M; Miljan EA; Sinden JD; Williams DJ
    Biotechnol Lett; 2009 Aug; 31(8):1167-72. PubMed ID: 19343502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human cell culture process capability: a comparison of manual and automated production.
    Liu Y; Hourd P; Chandra A; Williams DJ
    J Tissue Eng Regen Med; 2010 Jan; 4(1):45-54. PubMed ID: 19842115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated adherent human cell culture (mesenchymal stem cells).
    Thomas R; Ratcliffe E
    Methods Mol Biol; 2012; 806():393-406. PubMed ID: 22057466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expansion of human neural precursor cells in large-scale bioreactors for the treatment of neurodegenerative disorders.
    Baghbaderani BA; Behie LA; Sen A; Mukhida K; Hong M; Mendez I
    Biotechnol Prog; 2008; 24(4):859-70. PubMed ID: 18380486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of process quality engineering techniques to improve the understanding of the in vitro processing of stem cells for therapeutic use.
    Thomas RJ; Hourd PC; Williams DJ
    J Biotechnol; 2008 Sep; 136(3-4):148-55. PubMed ID: 18672011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel automated bioreactor for scalable process optimisation of haematopoietic stem cell culture.
    Ratcliffe E; Glen KE; Workman VL; Stacey AJ; Thomas RJ
    J Biotechnol; 2012 Oct; 161(3):387-90. PubMed ID: 22771559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel bioreactors for the culture and expansion of aggregative neural stem cells.
    Ng YL; Chase HA
    Bioprocess Biosyst Eng; 2008 Aug; 31(5):393-400. PubMed ID: 18026758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microarray-based gene expression analysis as a process characterization tool to establish comparability of complex biological products: scale-up of a whole-cell immunotherapy product.
    Wang M; Senger RS; Paredes C; Banik GG; Lin A; Papoutsakis ET
    Biotechnol Bioeng; 2009 Nov; 104(4):796-808. PubMed ID: 19591186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple and efficient method for generating Nurr1-positive neuronal stem cells from human wisdom teeth (tNSC) and the potential of tNSC for stroke therapy.
    Yang KL; Chen MF; Liao CH; Pang CY; Lin PY
    Cytotherapy; 2009; 11(5):606-17. PubMed ID: 19579137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparability of automated human induced pluripotent stem cell culture: a pilot study.
    Archibald PR; Chandra A; Thomas D; Chose O; Massouridès E; Laâbi Y; Williams DJ
    Bioprocess Biosyst Eng; 2016 Dec; 39(12):1847-1858. PubMed ID: 27503483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Culture without the petri-dish.
    Thompson JG
    Theriogenology; 2007 Jan; 67(1):16-20. PubMed ID: 17055563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of response surface methodology to maximize the productivity of scalable automated human embryonic stem cell manufacture.
    Ratcliffe E; Hourd P; Guijarro-Leach J; Rayment E; Williams DJ; Thomas RJ
    Regen Med; 2013 Jan; 8(1):39-48. PubMed ID: 23259804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mammalian cell culture scale-up and fed-batch control using automated flow cytometry.
    Sitton G; Srienc F
    J Biotechnol; 2008 Jun; 135(2):174-80. PubMed ID: 18490070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental microbial contamination in a stem cell bank.
    Cobo F; Concha A
    Lett Appl Microbiol; 2007 Apr; 44(4):379-86. PubMed ID: 17397475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approaches to the release of a master cell bank of PER.C6 cells; a novel cell substrate for the manufacture of human vaccines.
    Lewis JA; Brown EL; Duncan PA
    Dev Biol (Basel); 2006; 123():165-76; discussion 183-97. PubMed ID: 16566444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a scalable process for high-yield lentiviral vector production by transient transfection of HEK293 suspension cultures.
    Ansorge S; Lanthier S; Transfiguracion J; Durocher Y; Henry O; Kamen A
    J Gene Med; 2009 Oct; 11(10):868-76. PubMed ID: 19618482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lab automation and robotics: Automation on the move.
    Chapman T
    Nature; 2003 Feb; 421(6923):661, 663, 665-6. PubMed ID: 12571603
    [No Abstract]   [Full Text] [Related]  

  • 18. Clinical scale ex vivo manufacture of neutrophils from hematopoietic progenitor cells.
    Timmins NE; Palfreyman E; Marturana F; Dietmair S; Luikenga S; Lopez G; Fung YL; Minchinton R; Nielsen LK
    Biotechnol Bioeng; 2009 Nov; 104(4):832-40. PubMed ID: 19591208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An automated system for delivery of an unstable transcription factor to hematopoietic stem cell cultures.
    Csaszar E; Gavigan G; Ungrin M; Thérien C; Dubé P; Féthière J; Sauvageau G; Roy DC; Zandstra PW
    Biotechnol Bioeng; 2009 Jun; 103(2):402-12. PubMed ID: 19266473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and transplantation of induced megakaryocytes from hematopoietic stem cells for rapid platelet recovery by a two-step serum-free procedure.
    Chen TW; Hwang SM; Chu IM; Hsu SC; Hsieh TB; Yao CL
    Exp Hematol; 2009 Nov; 37(11):1330-1339.e5. PubMed ID: 19664680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.