These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 19343698)

  • 1. Forced detection Monte Carlo algorithms for accelerated blood vessel image simulations.
    Fredriksson I; Larsson M; Strömberg T
    J Biophotonics; 2009 Mar; 2(3):178-84. PubMed ID: 19343698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fixed forced detection for fast SPECT Monte-Carlo simulation.
    Cajgfinger T; Rit S; Létang JM; Halty A; Sarrut D
    Phys Med Biol; 2018 Mar; 63(5):055011. PubMed ID: 29185992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulations of pinhole imaging accelerated by kernel-based forced detection.
    Gieles M; de Jong HW; Beekman FJ
    Phys Med Biol; 2002 Jun; 47(11):1853-67. PubMed ID: 12108771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical parameters of embedded abnormalities in tissues as determined by Monte Carlo simulation.
    Jeeva JB; Singh M
    Electromagn Biol Med; 2012 Sep; 31(3):204-12. PubMed ID: 22897401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast hybrid SPECT simulation including efficient septal penetration modelling (SP-PSF).
    Staelens S; de Wit T; Beekman F
    Phys Med Biol; 2007 Jun; 52(11):3027-43. PubMed ID: 17505087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependence of light scattering profile in tissue on blood vessel diameter and distribution: a computer simulation study.
    Duadi H; Fixler D; Popovtzer R
    J Biomed Opt; 2013 Nov; 18(11):111408. PubMed ID: 23887384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid scatter correction for CT imaging.
    Baer M; Kachelrieß M
    Phys Med Biol; 2012 Nov; 57(21):6849-67. PubMed ID: 23038048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Monte Carlo Algorithms to Cardiac Imaging Reconstruction.
    Zhou J; Leja AG; Salvatori M; Latta DD; Di Fulvio A
    Curr Pharm Des; 2021; 27(16):1960-1972. PubMed ID: 33371829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo modeling of gamma cameras for I-131 imaging in targeted radiotherapy.
    Autret D; Bitar A; Ferrer L; Lisbona A; Bardiès M
    Cancer Biother Radiopharm; 2005 Feb; 20(1):77-84. PubMed ID: 15778585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On refraction in Monte-Carlo simulations of light transport through biological tissues.
    Kolinko VG; de Mul FF; Greve J; Priezzhev AV
    Med Biol Eng Comput; 1997 May; 35(3):287-8. PubMed ID: 9246866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully 3D Monte Carlo reconstruction in SPECT: a feasibility study.
    Lazaro D; El Bitar Z; Breton V; Hill D; Buvat I
    Phys Med Biol; 2005 Aug; 50(16):3739-54. PubMed ID: 16077224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulation of light transport in turbid medium with embedded object--spherical, cylindrical, ellipsoidal, or cuboidal objects embedded within multilayered tissues.
    Periyasamy V; Pramanik M
    J Biomed Opt; 2014 Apr; 19(4):045003. PubMed ID: 24727908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach.
    Kirillin M; Meglinski I; Kuzmin V; Sergeeva E; Myllylä R
    Opt Express; 2010 Oct; 18(21):21714-24. PubMed ID: 20941071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulations of increased/decreased scattering inclusions inside a turbid slab.
    Dagdug L; Chernomordik V; Weiss GH; Gandjbakhche AH
    Phys Med Biol; 2005 Dec; 50(23):5573-81. PubMed ID: 16306653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast and precise image generation of blood vessels embedded in skin.
    Zoller C; Kienle A
    J Biomed Opt; 2019 Jan; 24(1):1-9. PubMed ID: 30693701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transillumination optical tomography of tissue-engineered blood vessels: a Monte Carlo simulation.
    Yao G; Haidekker MA
    Appl Opt; 2005 Jul; 44(20):4265-71. PubMed ID: 16045214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photon energy recovery: a method to improve the effective energy resolution of gamma cameras.
    Hannequin PP; Mas JF
    J Nucl Med; 1998 Mar; 39(3):555-62. PubMed ID: 9529311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast Monte Carlo-simulator with full collimator and detector response modelling for SPECT.
    Sohlberg AO; Kajaste MT
    Ann Nucl Med; 2012 Jan; 26(1):92-8. PubMed ID: 22033783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast modelling of the collimator-detector response in Monte Carlo simulation of SPECT imaging using the angular response function.
    Song X; Segars WP; Du Y; Tsui BM; Frey EC
    Phys Med Biol; 2005 Apr; 50(8):1791-804. PubMed ID: 15815096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Evaluation of a scatter correction technique for single photon transmission measurements in PET by means of Monte Carlo simulations].
    Wegmann K; Brix G
    Nuklearmedizin; 2000; 39(3):67-71. PubMed ID: 10834193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.