These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 19343761)

  • 1. Soluble InP and GaP nanowires: self-seeded, solution-liquid-solid synthesis and electrical properties.
    Liu Z; Sun K; Jian WB; Xu D; Lin YF; Fang J
    Chemistry; 2009; 15(18):4546-52. PubMed ID: 19343761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective-area vapour-liquid-solid growth of InP nanowires.
    Dalacu D; Kam A; Guy Austing D; Wu X; Lapointe J; Aers GC; Poole PJ
    Nanotechnology; 2009 Sep; 20(39):395602. PubMed ID: 19724116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aqueous-solution growth of GaP and InP nanowires: a general route to phosphide, oxide, sulfide, and tungstate nanowires.
    Xiong Y; Xie Y; Li Z; Li X; Gao S
    Chemistry; 2004 Feb; 10(3):654-60. PubMed ID: 14767929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epitaxial growth of InP nanowires on germanium.
    Bakkers EP; van Dam JA; De Franceschi S; Kouwenhoven LP; Kaiser M; Verheijen M; Wondergem H; van der Sluis P
    Nat Mater; 2004 Nov; 3(11):769-73. PubMed ID: 15475961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold-catalyzed low-temperature growth of cadmium oxide nanowires by vapor transport.
    Kuo TJ; Huang MH
    J Phys Chem B; 2006 Jul; 110(28):13717-21. PubMed ID: 16836315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. III-V semiconductor nanowire growth: does arsenic diffuse through the metal nanoparticle catalyst?
    Tizei LH; Chiaramonte T; Ugarte D; Cotta MA
    Nanotechnology; 2009 Jul; 20(27):275604. PubMed ID: 19531855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of nanowire superlattice structures for nanoscale photonics and electronics.
    Gudiksen MS; Lauhon LJ; Wang J; Smith DC; Lieber CM
    Nature; 2002 Feb; 415(6872):617-20. PubMed ID: 11832939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrically Controlling and Monitoring InP Nanowire Growth from Solution.
    Dorn A; Allen PM; Bawendi MG
    ACS Nano; 2009 Oct; 3(10):3260-5. PubMed ID: 19772291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural properties of <111>B -oriented III-V nanowires.
    Johansson J; Karlsson LS; Svensson CP; MÃ¥rtensson T; Wacaser BA; Deppert K; Samuelson L; Seifert W
    Nat Mater; 2006 Jul; 5(7):574-80. PubMed ID: 16783358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-quality ultralong Bi2S3 nanowires: structure, growth, and properties.
    Yu Y; Jin CH; Wang RH; Chen Q; Peng LM
    J Phys Chem B; 2005 Oct; 109(40):18772-6. PubMed ID: 16853415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution-liquid-solid growth of ternary Cu-In-Se semiconductor nanowires from multiple- and single-source precursors.
    Wooten AJ; Werder DJ; Williams DJ; Casson JL; Hollingsworth JA
    J Am Chem Soc; 2009 Nov; 131(44):16177-88. PubMed ID: 19839616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices.
    Duan X; Huang Y; Cui Y; Wang J; Lieber CM
    Nature; 2001 Jan; 409(6816):66-9. PubMed ID: 11343112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature dependence of the field effect mobility of solution-grown germanium nanowires.
    Schricker AD; Joshi SV; Hanrath T; Banerjee SK; Korgel BA
    J Phys Chem B; 2006 Apr; 110(13):6816-23. PubMed ID: 16570990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires.
    Paiman S; Gao Q; Tan HH; Jagadish C; Pemasiri K; Montazeri M; Jackson HE; Smith LM; Yarrison-Rice JM; Zhang X; Zou J
    Nanotechnology; 2009 Jun; 20(22):225606. PubMed ID: 19436086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metallic single-crystal CoSi nanowires via chemical vapor deposition of single-source precursor.
    Schmitt AL; Zhu L; Schmeisser D; Himpsel FJ; Jin S
    J Phys Chem B; 2006 Sep; 110(37):18142-6. PubMed ID: 16970428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics Controlled Sharp Transformation from InP to GaP Nanowires via Introducing Trace Amount of Gallium.
    Tian Z; Yuan X; Zhang Z; Jia W; Zhou J; Huang H; Meng J; He J; Du Y
    Nanoscale Res Lett; 2021 Mar; 16(1):49. PubMed ID: 33743092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-principles study of the electronic properties of wurtzite, zinc-blende, and twinned InP nanowires.
    Li D; Wang Z; Gao F
    Nanotechnology; 2010 Dec; 21(50):505709. PubMed ID: 21098947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles.
    Cho KS; Talapin DV; Gaschler W; Murray CB
    J Am Chem Soc; 2005 May; 127(19):7140-7. PubMed ID: 15884956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman and photoluminescence properties of highly Cu doped ZnO nanowires fabricated by vapor-liquid-solid process.
    Zhu H; Iqbal J; Xu H; Yu D
    J Chem Phys; 2008 Sep; 129(12):124713. PubMed ID: 19045054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unconventional zigzag indium phosphide single-crystalline and twinned nanowires.
    Shen G; Bando Y; Liu B; Tang C; Golberg D
    J Phys Chem B; 2006 Oct; 110(41):20129-32. PubMed ID: 17034187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.