BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 19343761)

  • 1. Soluble InP and GaP nanowires: self-seeded, solution-liquid-solid synthesis and electrical properties.
    Liu Z; Sun K; Jian WB; Xu D; Lin YF; Fang J
    Chemistry; 2009; 15(18):4546-52. PubMed ID: 19343761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective-area vapour-liquid-solid growth of InP nanowires.
    Dalacu D; Kam A; Guy Austing D; Wu X; Lapointe J; Aers GC; Poole PJ
    Nanotechnology; 2009 Sep; 20(39):395602. PubMed ID: 19724116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aqueous-solution growth of GaP and InP nanowires: a general route to phosphide, oxide, sulfide, and tungstate nanowires.
    Xiong Y; Xie Y; Li Z; Li X; Gao S
    Chemistry; 2004 Feb; 10(3):654-60. PubMed ID: 14767929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epitaxial growth of InP nanowires on germanium.
    Bakkers EP; van Dam JA; De Franceschi S; Kouwenhoven LP; Kaiser M; Verheijen M; Wondergem H; van der Sluis P
    Nat Mater; 2004 Nov; 3(11):769-73. PubMed ID: 15475961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold-catalyzed low-temperature growth of cadmium oxide nanowires by vapor transport.
    Kuo TJ; Huang MH
    J Phys Chem B; 2006 Jul; 110(28):13717-21. PubMed ID: 16836315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. III-V semiconductor nanowire growth: does arsenic diffuse through the metal nanoparticle catalyst?
    Tizei LH; Chiaramonte T; Ugarte D; Cotta MA
    Nanotechnology; 2009 Jul; 20(27):275604. PubMed ID: 19531855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of nanowire superlattice structures for nanoscale photonics and electronics.
    Gudiksen MS; Lauhon LJ; Wang J; Smith DC; Lieber CM
    Nature; 2002 Feb; 415(6872):617-20. PubMed ID: 11832939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrically Controlling and Monitoring InP Nanowire Growth from Solution.
    Dorn A; Allen PM; Bawendi MG
    ACS Nano; 2009 Oct; 3(10):3260-5. PubMed ID: 19772291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural properties of <111>B -oriented III-V nanowires.
    Johansson J; Karlsson LS; Svensson CP; MÃ¥rtensson T; Wacaser BA; Deppert K; Samuelson L; Seifert W
    Nat Mater; 2006 Jul; 5(7):574-80. PubMed ID: 16783358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-quality ultralong Bi2S3 nanowires: structure, growth, and properties.
    Yu Y; Jin CH; Wang RH; Chen Q; Peng LM
    J Phys Chem B; 2005 Oct; 109(40):18772-6. PubMed ID: 16853415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution-liquid-solid growth of ternary Cu-In-Se semiconductor nanowires from multiple- and single-source precursors.
    Wooten AJ; Werder DJ; Williams DJ; Casson JL; Hollingsworth JA
    J Am Chem Soc; 2009 Nov; 131(44):16177-88. PubMed ID: 19839616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices.
    Duan X; Huang Y; Cui Y; Wang J; Lieber CM
    Nature; 2001 Jan; 409(6816):66-9. PubMed ID: 11343112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature dependence of the field effect mobility of solution-grown germanium nanowires.
    Schricker AD; Joshi SV; Hanrath T; Banerjee SK; Korgel BA
    J Phys Chem B; 2006 Apr; 110(13):6816-23. PubMed ID: 16570990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires.
    Paiman S; Gao Q; Tan HH; Jagadish C; Pemasiri K; Montazeri M; Jackson HE; Smith LM; Yarrison-Rice JM; Zhang X; Zou J
    Nanotechnology; 2009 Jun; 20(22):225606. PubMed ID: 19436086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metallic single-crystal CoSi nanowires via chemical vapor deposition of single-source precursor.
    Schmitt AL; Zhu L; Schmeisser D; Himpsel FJ; Jin S
    J Phys Chem B; 2006 Sep; 110(37):18142-6. PubMed ID: 16970428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics Controlled Sharp Transformation from InP to GaP Nanowires via Introducing Trace Amount of Gallium.
    Tian Z; Yuan X; Zhang Z; Jia W; Zhou J; Huang H; Meng J; He J; Du Y
    Nanoscale Res Lett; 2021 Mar; 16(1):49. PubMed ID: 33743092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-principles study of the electronic properties of wurtzite, zinc-blende, and twinned InP nanowires.
    Li D; Wang Z; Gao F
    Nanotechnology; 2010 Dec; 21(50):505709. PubMed ID: 21098947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles.
    Cho KS; Talapin DV; Gaschler W; Murray CB
    J Am Chem Soc; 2005 May; 127(19):7140-7. PubMed ID: 15884956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman and photoluminescence properties of highly Cu doped ZnO nanowires fabricated by vapor-liquid-solid process.
    Zhu H; Iqbal J; Xu H; Yu D
    J Chem Phys; 2008 Sep; 129(12):124713. PubMed ID: 19045054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unconventional zigzag indium phosphide single-crystalline and twinned nanowires.
    Shen G; Bando Y; Liu B; Tang C; Golberg D
    J Phys Chem B; 2006 Oct; 110(41):20129-32. PubMed ID: 17034187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.