These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 19343761)

  • 21. Low-temperature large-scale synthesis and electrical testing of ultralong copper nanowires.
    Mohl M; Pusztai P; Kukovecz A; Konya Z; Kukkola J; Kordas K; Vajtai R; Ajayan PM
    Langmuir; 2010 Nov; 26(21):16496-502. PubMed ID: 20597526
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low-temperature synthesis of single crystalline Ag2S nanowires on silver substrates.
    Wen X; Wang S; Xie Y; Li XY; Yang S
    J Phys Chem B; 2005 May; 109(20):10100-6. PubMed ID: 16852224
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of InP nanofibers from tri(m-tolyl)phosphine: an alternative route to metal phosphide nanostructures.
    Wang J; Yang Q; Zhang Z; Li T; Zhang S
    Dalton Trans; 2010 Jan; (1):227-33. PubMed ID: 20023954
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-catalysis: a contamination-free, substrate-free growth mechanism for single-crystal nanowire and nanotube growth by chemical vapor deposition.
    Noor Mohammad S
    J Chem Phys; 2006 Sep; 125(9):094705. PubMed ID: 16965103
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time-resolved photoluminescence investigations on HfO2-capped InP nanowires.
    Münch S; Reitzenstein S; Borgström M; Thelander C; Samuelson L; Worschech L; Forchel A
    Nanotechnology; 2010 Mar; 21(10):105711. PubMed ID: 20157234
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of InP nanotubes.
    Bakkers EP; Verheijen MA
    J Am Chem Soc; 2003 Mar; 125(12):3440-1. PubMed ID: 12643700
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surfactant-free, large-scale, solution-liquid-solid growth of gallium phosphide nanowires and their use for visible-light-driven hydrogen production from water reduction.
    Sun J; Liu C; Yang P
    J Am Chem Soc; 2011 Dec; 133(48):19306-9. PubMed ID: 22050218
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One-dimensional self-assembly of planar pi-conjugated molecules: adaptable building blocks for organic nanodevices.
    Zang L; Che Y; Moore JS
    Acc Chem Res; 2008 Dec; 41(12):1596-608. PubMed ID: 18616298
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generic nano-imprint process for fabrication of nanowire arrays.
    Pierret A; Hocevar M; Diedenhofen SL; Algra RE; Vlieg E; Timmering EC; Verschuuren MA; Immink GW; Verheijen MA; Bakkers EP
    Nanotechnology; 2010 Feb; 21(6):065305. PubMed ID: 20057022
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controlled synthesis of ultra-long AlN nanowires in different densities and in situ investigation of the physical properties of an individual AlN nanowire.
    Liu F; Su ZJ; Mo FY; Li L; Chen ZS; Liu QR; Chen J; Deng SZ; Xu NS
    Nanoscale; 2011 Feb; 3(2):610-8. PubMed ID: 21103529
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanowires as building blocks for self-assembling logic and memory circuits.
    Kovtyukhova NI; Mallouk TE
    Chemistry; 2002 Oct; 8(19):4354-63. PubMed ID: 12355523
    [TBL] [Abstract][Full Text] [Related]  

  • 32. InSb heterostructure nanowires: MOVPE growth under extreme lattice mismatch.
    Caroff P; Messing ME; Mattias Borg B; Dick KA; Deppert K; Wernersson LE
    Nanotechnology; 2009 Dec; 20(49):495606. PubMed ID: 19904026
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heterostructured Bi2Se3 nanowires with periodic phase boundaries.
    Qiu X; Burda C; Fu R; Pu L; Chen H; Zhu J
    J Am Chem Soc; 2004 Dec; 126(50):16276-7. PubMed ID: 15600301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High density germanium nanowire assemblies: contact challenges and electrical characterization.
    Erts D; Polyakov B; Daly B; Morris MA; Ellingboe S; Boland J; Holmes JD
    J Phys Chem B; 2006 Jan; 110(2):820-6. PubMed ID: 16471609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of self-supported patterns of aligned beta-FeOOH nanowires by a low-temperature solution reaction.
    Xiong Y; Xie Y; Chen S; Li Z
    Chemistry; 2003 Oct; 9(20):4991-6. PubMed ID: 14562317
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electron transport in Si nanochains/nanowires.
    Kohno H; Kikuo I; Oto K
    J Electron Microsc (Tokyo); 2005; 54 Suppl 1():i15-9. PubMed ID: 16157634
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temperature-controlled growth of ZnO nanowires and nanoplates in the temperature range 250-300 degrees C.
    Xu C; Kim D; Chun J; Rho K; Chon B; Hong S; Joo T
    J Phys Chem B; 2006 Nov; 110(43):21741-6. PubMed ID: 17064134
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solution-liquid-solid growth of semiconductor nanowires.
    Wang F; Dong A; Sun J; Tang R; Yu H; Buhro WE
    Inorg Chem; 2006 Sep; 45(19):7511-21. PubMed ID: 16961336
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrical and optical properties of InP nanowire ensemble p⁺-i-n⁺ photodetectors.
    Pettersson H; Zubritskaya I; Nghia NT; Wallentin J; Borgström MT; Storm K; Landin L; Wickert P; Capasso F; Samuelson L
    Nanotechnology; 2012 Apr; 23(13):135201. PubMed ID: 22418741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increase of the photoluminescence intensity of InP nanowires by photoassisted surface passivation.
    van Vugt LK; Veen SJ; Bakkers EP; Roest AL; Vanmaekelbergh D
    J Am Chem Soc; 2005 Sep; 127(35):12357-62. PubMed ID: 16131216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.