BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 19343778)

  • 1. Osteoclastogenesis on hydroxyapatite ceramics: the effect of carbonate substitution.
    Spence G; Patel N; Brooks R; Bonfield W; Rushton N
    J Biomed Mater Res A; 2010 Mar; 92(4):1292-300. PubMed ID: 19343778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbonate substituted hydroxyapatite: resorption by osteoclasts modifies the osteoblastic response.
    Spence G; Patel N; Brooks R; Rushton N
    J Biomed Mater Res A; 2009 Jul; 90(1):217-24. PubMed ID: 18496864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of osteoclast-like cells on HA and TCP ceramics.
    Detsch R; Mayr H; Ziegler G
    Acta Biomater; 2008 Jan; 4(1):139-48. PubMed ID: 17723325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration.
    Germaini MM; Detsch R; Grünewald A; Magnaudeix A; Lalloue F; Boccaccini AR; Champion E
    Biomed Mater; 2017 Jun; 12(3):035008. PubMed ID: 28351999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone formation in a carbonate-substituted hydroxyapatite implant is inhibited by zoledronate: the importance of bioresorption to osteoconduction.
    Spence G; Phillips S; Campion C; Brooks R; Rushton N
    J Bone Joint Surg Br; 2008 Dec; 90(12):1635-40. PubMed ID: 19043138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro osteoclast resorption of bone substitute biomaterials used for implant site augmentation: a pilot study.
    Taylor JC; Cuff SE; Leger JP; Morra A; Anderson GI
    Int J Oral Maxillofac Implants; 2002; 17(3):321-30. PubMed ID: 12074446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volumetric analysis of osteoclastic bioresorption of calcium phosphate ceramics with different solubilities.
    Winkler T; Hoenig E; Gildenhaar R; Berger G; Fritsch D; Janssen R; Morlock MM; Schilling AF
    Acta Biomater; 2010 Oct; 6(10):4127-35. PubMed ID: 20451677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro osteoclast formation and resorption of silicon-substituted hydroxyapatite ceramics.
    Friederichs RJ; Brooks RA; Ueda M; Best SM
    J Biomed Mater Res A; 2015 Oct; 103(10):3312-22. PubMed ID: 25847383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of interconnecting porous structure of hydroxyapatite ceramics on interface between grafted tendon and ceramics.
    Omae H; Mochizuki Y; Yokoya S; Adachi N; Ochi M
    J Biomed Mater Res A; 2006 Nov; 79(2):329-37. PubMed ID: 16817208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs.
    Ripamonti U; Crooks J; Khoali L; Roden L
    Biomaterials; 2009 Mar; 30(7):1428-39. PubMed ID: 19081131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering.
    Cyster LA; Grant DM; Howdle SM; Rose FR; Irvine DJ; Freeman D; Scotchford CA; Shakesheff KM
    Biomaterials; 2005 Mar; 26(7):697-702. PubMed ID: 15350773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation of mononuclear precursors into osteoclasts on the surface of Si-substituted hydroxyapatite.
    Botelho CM; Brooks RA; Spence G; McFarlane I; Lopes MA; Best SM; Santos JD; Rushton N; Bonfield W
    J Biomed Mater Res A; 2006 Sep; 78(4):709-20. PubMed ID: 16739170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro studies of human and rat osteoclast activity on hydroxyapatite, beta-tricalcium phosphate, calcium carbonate.
    Monchau F; Lefèvre A; Descamps M; Belquin-myrdycz A; Laffargue P; Hildebrand HF
    Biomol Eng; 2002 Aug; 19(2-6):143-52. PubMed ID: 12202175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Biodegradation of synthetic bioglasses with different crystallinity in vitro].
    Zhang Y; Cai Y; Wang Q; Zhao Y; Monchau F; Lefevre A; Hildebrand HF
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Oct; 22(5):990-4. PubMed ID: 16294737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and surface properties of amino-acid-modified carbonate-containing hydroxyapatite particles.
    Jack KS; Vizcarra TG; Trau M
    Langmuir; 2007 Nov; 23(24):12233-42. PubMed ID: 17963411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resorbability of bone substitute biomaterials by human osteoclasts.
    Schilling AF; Linhart W; Filke S; Gebauer M; Schinke T; Rueger JM; Amling M
    Biomaterials; 2004 Aug; 25(18):3963-72. PubMed ID: 15046886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteogenic differentiation of cultured rat and human bone marrow cells on the surface of zinc-releasing calcium phosphate ceramics.
    Ikeuchi M; Ito A; Dohi Y; Ohgushi H; Shimaoka H; Yonemasu K; Tateishi T
    J Biomed Mater Res A; 2003 Dec; 67(4):1115-22. PubMed ID: 14624496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The slow resorption with replacement by bone of a hydrothermally synthesized pure calcium-deficient hydroxyapatite.
    Okuda T; Ioku K; Yonezawa I; Minagi H; Gonda Y; Kawachi G; Kamitakahara M; Shibata Y; Murayama H; Kurosawa H; Ikeda T
    Biomaterials; 2008 Jun; 29(18):2719-28. PubMed ID: 18403011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spherical bioactive glass with enhanced rates of hydroxyapatite deposition and hemostatic activity.
    Ostomel TA; Shi Q; Tsung CK; Liang H; Stucky GD
    Small; 2006 Nov; 2(11):1261-5. PubMed ID: 17192971
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.