BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 19344113)

  • 1. Assessment of the accuracy of theoretical methods for calculating (27)Al nuclear magnetic resonance shielding tensors of aquated aluminum species.
    Qian Z; Feng H; He L; Yang W; Bi S
    J Phys Chem A; 2009 Apr; 113(17):5138-43. PubMed ID: 19344113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmark database of barrier heights for heavy atom transfer, nucleophilic substitution, association, and unimolecular reactions and its use to test theoretical methods.
    Zhao Y; González-García N; Truhlar DG
    J Phys Chem A; 2005 Mar; 109(9):2012-8. PubMed ID: 16833536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical test of some computational methods for prediction of NMR ¹H and ¹³C chemical shifts.
    Toomsalu E; Burk P
    J Mol Model; 2015 Sep; 21(9):244. PubMed ID: 26318200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting 9Be nuclear magnetic resonance chemical shielding tensors utilizing density functional theory.
    Plieger PG; John KD; Keizer TS; McCleskey TM; Burrell AK; Martin RL
    J Am Chem Soc; 2004 Nov; 126(44):14651-8. PubMed ID: 15521785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio procedure for aqueous-phase pKa calculation: the acidity of nitrous acid.
    da Silva G; Kennedy EM; Dlugogorski BZ
    J Phys Chem A; 2006 Oct; 110(39):11371-6. PubMed ID: 17004748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational studies of 13C NMR chemical shifts of saccharides.
    Taubert S; Konschin H; Sundholm D
    Phys Chem Chem Phys; 2005 Jul; 7(13):2561-9. PubMed ID: 16189565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum vs. classical models of the nitro group for proton chemical shift calculations and conformational analysis.
    Mobli M; Abraham RJ
    J Comput Chem; 2005 Mar; 26(4):389-98. PubMed ID: 15651034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remarks on GIAO-DFT predictions of 13C chemical shifts.
    Dybiec K; Gryff-Keller A
    Magn Reson Chem; 2009 Jan; 47(1):63-6. PubMed ID: 18951367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. (129)Xe chemical shift by the perturbational relativistic method: xenon fluorides.
    Lantto P; Vaara J
    J Chem Phys; 2007 Aug; 127(8):084312. PubMed ID: 17764253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear magnetic shielding constants of liquid water: insights from hybrid quantum mechanics/molecular mechanics models.
    Kongsted J; Nielsen CB; Mikkelsen KV; Christiansen O; Ruud K
    J Chem Phys; 2007 Jan; 126(3):034510. PubMed ID: 17249887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An NMR, IR and theoretical investigation of (1)H chemical shifts and hydrogen bonding in phenols.
    Abraham RJ; Mobli M
    Magn Reson Chem; 2007 Oct; 45(10):865-77. PubMed ID: 17729232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical predictions of nuclear magnetic resonance parameters in a novel organo-xenon species: chemical shifts and nuclear quadrupole couplings in HXeCCH.
    Straka M; Lantto P; Räsänen M; Vaara J
    J Chem Phys; 2007 Dec; 127(23):234314. PubMed ID: 18154389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GIAO/DFT evaluation of 13C NMR chemical shifts of selected acetals based on DFT optimized geometries.
    Migda W; Rys B
    Magn Reson Chem; 2004 May; 42(5):459-66. PubMed ID: 15095382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic insights into triterpene synthesis from quantum mechanical calculations. Detection of systematic errors in B3LYP cyclization energies.
    Matsuda SP; Wilson WK; Xiong Q
    Org Biomol Chem; 2006 Feb; 4(3):530-43. PubMed ID: 16446812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculating accurate proton chemical shifts of organic molecules with density functional methods and modest basis sets.
    Jain R; Bally T; Rablen PR
    J Org Chem; 2009 Jun; 74(11):4017-23. PubMed ID: 19435298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling NMR chemical shift: A survey of density functional theory approaches for calculating tensor properties.
    Sefzik TH; Turco D; Iuliucci RJ; Facelli JC
    J Phys Chem A; 2005 Feb; 109(6):1180-7. PubMed ID: 16833428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of quantum chemical models for calculating NMR shielding parameters in peptides: mixed basis set and ONIOM methods combined with a complete basis set extrapolation.
    Moon S; Case DA
    J Comput Chem; 2006 May; 27(7):825-36. PubMed ID: 16541428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DFT calculations as a powerful technique to probe the crystal structure of Al(acac)3.
    Amini SK; Tafazzoli M
    Magn Reson Chem; 2008 Nov; 46(11):1045-50. PubMed ID: 18802968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of some representative density functional theory and wave function theory methods for the studies of amino acids.
    Yu W; Liang L; Lin Z; Ling S; Haranczyk M; Gutowski M
    J Comput Chem; 2009 Mar; 30(4):589-600. PubMed ID: 18711717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate prediction of proton chemical shifts. II. Peptide analogues.
    Wang B; Hinton JF; Pulay P
    J Comput Chem; 2002 Mar; 23(4):492-7. PubMed ID: 11908086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.