These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 19344123)

  • 1. Folding, self-assembly, and bulk material properties of a de novo designed three-stranded beta-sheet hydrogel.
    Rughani RV; Salick DA; Lamm MS; Yucel T; Pochan DJ; Schneider JP
    Biomacromolecules; 2009 May; 10(5):1295-304. PubMed ID: 19344123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide.
    Pochan DJ; Schneider JP; Kretsinger J; Ozbas B; Rajagopal K; Haines L
    J Am Chem Soc; 2003 Oct; 125(39):11802-3. PubMed ID: 14505386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo design of strand-swapped beta-hairpin hydrogels.
    Nagarkar RP; Hule RA; Pochan DJ; Schneider JP
    J Am Chem Soc; 2008 Apr; 130(13):4466-74. PubMed ID: 18335936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the pH responsiveness of beta-hairpin peptide folding, self-assembly, and hydrogel material formation.
    Rajagopal K; Lamm MS; Haines-Butterick LA; Pochan DJ; Schneider JP
    Biomacromolecules; 2009 Sep; 10(9):2619-25. PubMed ID: 19663418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoreversible protein hydrogel as cell scaffold.
    Yan H; Saiani A; Gough JE; Miller AF
    Biomacromolecules; 2006 Oct; 7(10):2776-82. PubMed ID: 17025352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytocompatibility of self-assembled beta-hairpin peptide hydrogel surfaces.
    Kretsinger JK; Haines LA; Ozbas B; Pochan DJ; Schneider JP
    Biomaterials; 2005 Sep; 26(25):5177-86. PubMed ID: 15792545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introducing chemical functionality in Fmoc-peptide gels for cell culture.
    Jayawarna V; Richardson SM; Hirst AR; Hodson NW; Saiani A; Gough JE; Ulijn RV
    Acta Biomater; 2009 Mar; 5(3):934-43. PubMed ID: 19249724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide.
    Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T
    Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of peptide and guest charge on the structural, mechanical and release properties of β-sheet forming peptides.
    Roberts D; Rochas C; Saiani A; Miller AF
    Langmuir; 2012 Nov; 28(46):16196-206. PubMed ID: 23088490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-activated hydrogel formation via the triggered folding and self-assembly of a designed peptide.
    Haines LA; Rajagopal K; Ozbas B; Salick DA; Pochan DJ; Schneider JP
    J Am Chem Soc; 2005 Dec; 127(48):17025-9. PubMed ID: 16316249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogelation and self-assembly of Fmoc-tripeptides: unexpected influence of sequence on self-assembled fibril structure, and hydrogel modulus and anisotropy.
    Cheng G; Castelletto V; Moulton CM; Newby GE; Hamley IW
    Langmuir; 2010 Apr; 26(7):4990-8. PubMed ID: 20073495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide.
    Schneider JP; Pochan DJ; Ozbas B; Rajagopal K; Pakstis L; Kretsinger J
    J Am Chem Soc; 2002 Dec; 124(50):15030-7. PubMed ID: 12475347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature and pH effects on biophysical and morphological properties of self-assembling peptide RADA16-I.
    Ye Z; Zhang H; Luo H; Wang S; Zhou Q; DU X; Tang C; Chen L; Liu J; Shi YK; Zhang EY; Ellis-Behnke R; Zhao X
    J Pept Sci; 2008 Feb; 14(2):152-62. PubMed ID: 18196533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laminated morphology of nontwisting beta-sheet fibrils constructed via peptide self-assembly.
    Lamm MS; Rajagopal K; Schneider JP; Pochan DJ
    J Am Chem Soc; 2005 Nov; 127(47):16692-700. PubMed ID: 16305260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels.
    Pääkkö M; Ankerfors M; Kosonen H; Nykänen A; Ahola S; Osterberg M; Ruokolainen J; Laine J; Larsson PT; Ikkala O; Lindström T
    Biomacromolecules; 2007 Jun; 8(6):1934-41. PubMed ID: 17474776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells.
    Haines-Butterick L; Rajagopal K; Branco M; Salick D; Rughani R; Pilarz M; Lamm MS; Pochan DJ; Schneider JP
    Proc Natl Acad Sci U S A; 2007 May; 104(19):7791-6. PubMed ID: 17470802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators.
    Rajagopal K; Ozbas B; Pochan DJ; Schneider JP
    Eur Biophys J; 2006 Jan; 35(2):162-9. PubMed ID: 16283291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives.
    Ryan DM; Doran TM; Anderson SB; Nilsson BL
    Langmuir; 2011 Apr; 27(7):4029-39. PubMed ID: 21401045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. State of water, molecular structure, and cytotoxicity of silk hydrogels.
    Numata K; Katashima T; Sakai T
    Biomacromolecules; 2011 Jun; 12(6):2137-44. PubMed ID: 21517113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of pH and calcium dual-responsive peptide-amphiphilic hydrogel.
    Zhou XR; Ge R; Luo SZ
    J Pept Sci; 2013 Dec; 19(12):737-44. PubMed ID: 24123618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.