These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 19344150)
1. Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods. Shang N; Papakonstantinou P; Wang P; Zakharov A; Palnitkar U; Lin IN; Chu M; Stamboulis A ACS Nano; 2009 Apr; 3(4):1032-8. PubMed ID: 19344150 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of the stability of electron field emission behavior and the related microplasma devices of carbon nanotubes by coating diamond films. Chang TH; Kunuku S; Hong YJ; Leou KC; Yew TR; Tai NH; Lin IN ACS Appl Mater Interfaces; 2014 Jul; 6(14):11589-97. PubMed ID: 24955653 [TBL] [Abstract][Full Text] [Related]
3. Low cost fabrication of diamond nano-tips on porous anodic alumina by hot filament chemical vapor deposition and the field emission effects. Tsai HY; Liu HC; Chen JH; Yeh CC Nanotechnology; 2011 Jun; 22(23):235301. PubMed ID: 21474868 [TBL] [Abstract][Full Text] [Related]
4. Optical and field-emission properties of ZnO nanostructures deposited using high-pressure pulsed laser deposition. Premkumar T; Zhou YS; Lu YF; Baskar K ACS Appl Mater Interfaces; 2010 Oct; 2(10):2863-9. PubMed ID: 20882957 [TBL] [Abstract][Full Text] [Related]
5. Molecular template assisted growth of ultrathin silicon carbide nanowires with strong green light emission and excellent field-emission properties. Xi G; He Y; Wang C Chemistry; 2010 May; 16(17):5184-90. PubMed ID: 20309964 [TBL] [Abstract][Full Text] [Related]
6. Large field enhancement at electrochemically grown quasi-1D Ni nanostructures with low-threshold cold-field electron emission. Banerjee AN; Qian S; Joo SW Nanotechnology; 2011 Jan; 22(3):035702. PubMed ID: 21149965 [TBL] [Abstract][Full Text] [Related]
7. Flexible cold cathode with ultralow threshold field designed through wet chemical route. Maiti UN; Maiti S; Thapa R; Chattopadhyay KK Nanotechnology; 2010 Dec; 21(50):505701. PubMed ID: 21098936 [TBL] [Abstract][Full Text] [Related]
8. Stable field emission performance from urchin-like ZnO nanostructures. Jiang H; Hu J; Gu F; Li C Nanotechnology; 2009 Feb; 20(5):055706. PubMed ID: 19417365 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of carbon nanotubes on diamond-like carbon by the hot filament plasma-enhanced chemical vapor deposition method. Choi EC; Park YS; Hong B Micron; 2009; 40(5-6):612-6. PubMed ID: 19318258 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and field electron emission properties of hybrid carbon nanotubes and nanoparticles. Ho YM; Yang GM; Zheng WT; Wang X; Tian HW; Xu Q; Li HB; Liu JW; Qi JL; Jiang Q Nanotechnology; 2008 Feb; 19(6):065710. PubMed ID: 21730716 [TBL] [Abstract][Full Text] [Related]
11. Single-crystal SnO(2) nanoshuttles: shape-controlled synthesis, perfect flexibility and high-performance field emission. Li J; Chen M; Tian S; Jin A; Xia X; Gu C Nanotechnology; 2011 Dec; 22(50):505601. PubMed ID: 22108293 [TBL] [Abstract][Full Text] [Related]
12. Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters. Nguyen DD; Tai NH; Chen SY; Chueh YL Nanoscale; 2012 Jan; 4(2):632-8. PubMed ID: 22147118 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of plasma illumination characteristics of few-layer graphene-diamond nanorods hybrid. Sankaran KJ; Yeh CJ; Drijkoningen S; Pobedinskas P; Van Bael MK; Leou KC; Lin IN; Haenen K Nanotechnology; 2017 Feb; 28(6):065701. PubMed ID: 28035093 [TBL] [Abstract][Full Text] [Related]
14. Enhanced field emission properties of vertically aligned double-walled carbon nanotube arrays. Chen G; Shin DH; Iwasaki T; Kawarada H; Lee CJ Nanotechnology; 2008 Oct; 19(41):415703. PubMed ID: 21832654 [TBL] [Abstract][Full Text] [Related]
15. Fabrication and field emission study of novel rod-shaped diamond-like carbon nanostructures. Varshney D; Makarov VI; Saxena P; González-Berríos A; Scott JF; Weiner BR; Morell G Nanotechnology; 2010 Jul; 21(28):285301. PubMed ID: 20562486 [TBL] [Abstract][Full Text] [Related]
16. Forms and behaviour of vacuum emission electronic devices comprising diamond or other carbon cold cathode emitters. Davidson JL; Kang WP; Subramanian K; Wong YM Philos Trans A Math Phys Eng Sci; 2008 Jan; 366(1863):281-93. PubMed ID: 18024363 [TBL] [Abstract][Full Text] [Related]
17. Role of carbon nanotube interlayer in enhancing the electron field emission behavior of ultrananocrystalline diamond coated Si-tip arrays. Chang TH; Kunuku S; Kurian J; Manekkathodi A; Chen LJ; Leou KC; Tai NH; Lin IN ACS Appl Mater Interfaces; 2015 Apr; 7(14):7732-40. PubMed ID: 25793425 [TBL] [Abstract][Full Text] [Related]
18. Growth and field emission properties of tubular carbon cones. Li JJ; Wang Q; Gu CZ Ultramicroscopy; 2007 Sep; 107(9):861-4. PubMed ID: 17383096 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of double-walled carbon nanotubes by catalytic chemical vapor deposition and their field emission properties. Lee YD; Lee HJ; Han JH; Yoo JE; Lee YH; Kim JK; Nahm S; Ju BK J Phys Chem B; 2006 Mar; 110(11):5310-4. PubMed ID: 16539462 [TBL] [Abstract][Full Text] [Related]
20. Self-assembled growth of multi-layer graphene on planar and nano-structured substrates and its field emission properties. Deng JH; Yu B; Li GZ; Hou XG; Zhao ML; Li DJ; Zheng RT; Cheng GA Nanoscale; 2013 Dec; 5(24):12388-93. PubMed ID: 24162073 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]