These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Size-Dependent EPR Effect of Polymeric Nanoparticles on Tumor Targeting. Kang H; Rho S; Stiles WR; Hu S; Baek Y; Hwang DW; Kashiwagi S; Kim MS; Choi HS Adv Healthc Mater; 2020 Jan; 9(1):e1901223. PubMed ID: 31794153 [TBL] [Abstract][Full Text] [Related]
5. Basic Physicochemical Properties of Polyethylene Glycol Coated Gold Nanoparticles that Determine Their Interaction with Cells. Del Pino P; Yang F; Pelaz B; Zhang Q; Kantner K; Hartmann R; Martinez de Baroja N; Gallego M; Möller M; Manshian BB; Soenen SJ; Riedel R; Hampp N; Parak WJ Angew Chem Int Ed Engl; 2016 Apr; 55(18):5483-7. PubMed ID: 27028669 [TBL] [Abstract][Full Text] [Related]
6. Biodistribution and pharmacokinetic analysis of long-circulating thiolated gelatin nanoparticles following systemic administration in breast cancer-bearing mice. Kommareddy S; Amiji M J Pharm Sci; 2007 Feb; 96(2):397-407. PubMed ID: 17075865 [TBL] [Abstract][Full Text] [Related]
7. In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy. Puvanakrishnan P; Park J; Chatterjee D; Krishnan S; Tunnell JW Int J Nanomedicine; 2012; 7():1251-8. PubMed ID: 22419872 [TBL] [Abstract][Full Text] [Related]
8. Functionalized, Long-Circulating, and Ultrasmall Gold Nanocarriers for Overcoming the Barriers of Low Nanoparticle Delivery Efficiency and Poor Tumor Penetration. Lee KY; Lee GY; Lane LA; Li B; Wang J; Lu Q; Wang Y; Nie S Bioconjug Chem; 2017 Jan; 28(1):244-252. PubMed ID: 27341302 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the physicochemical properties and the biocompatibility of polyethylene glycol-conjugated gold nanoparticles: A formulation strategy for siRNA delivery. Rahme K; Guo J; Holmes JD; O'Driscoll CM Colloids Surf B Biointerfaces; 2015 Nov; 135():604-612. PubMed ID: 26322474 [TBL] [Abstract][Full Text] [Related]
10. Tuning the hydrophilicity of gold nanoparticles templated in star block copolymers. Fustin CA; Colard C; Filali M; Guillet P; Duwez AS; Meier MA; Schubert US; Gohy JF Langmuir; 2006 Jul; 22(15):6690-5. PubMed ID: 16831014 [TBL] [Abstract][Full Text] [Related]
11. Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. Oh E; Delehanty JB; Sapsford KE; Susumu K; Goswami R; Blanco-Canosa JB; Dawson PE; Granek J; Shoff M; Zhang Q; Goering PL; Huston A; Medintz IL ACS Nano; 2011 Aug; 5(8):6434-48. PubMed ID: 21774456 [TBL] [Abstract][Full Text] [Related]
12. Fluorescence-tagged gold nanoparticles for rapidly characterizing the size-dependent biodistribution in tumor models. Chou LY; Chan WC Adv Healthc Mater; 2012 Nov; 1(6):714-21. PubMed ID: 23184822 [TBL] [Abstract][Full Text] [Related]
13. Analyzing the influence of PEG molecular weight on the separation of PEGylated gold nanoparticles by asymmetric-flow field-flow fractionation. Hansen M; Smith MC; Crist RM; Clogston JD; McNeil SE Anal Bioanal Chem; 2015 Nov; 407(29):8661-72. PubMed ID: 26449845 [TBL] [Abstract][Full Text] [Related]
14. Ultrasmall Gold Nanoparticles Behavior in Vivo Modulated by Surface Polyethylene Glycol (PEG) Grafting. Huo S; Chen S; Gong N; Liu J; Li X; Zhao Y; Liang XJ Bioconjug Chem; 2017 Jan; 28(1):239-243. PubMed ID: 27731973 [TBL] [Abstract][Full Text] [Related]
15. A solution to the PEG dilemma: efficient bioconjugation of large gold nanoparticles for biodiagnostic applications using mixed layers. Liu T; Thierry B Langmuir; 2012 Nov; 28(44):15634-42. PubMed ID: 23061489 [TBL] [Abstract][Full Text] [Related]
16. PEGylated Pemetrexed and PolyNIPAM Decorated Gold Nanoparticles: A Biocompatible and Highly Stable CT Contrast Agent for Cancer Imaging. Mohajeri M; Salehi P; Heidari B; Rafati H; Asghari SM; Behboudi H; Iranpour P ACS Appl Bio Mater; 2024 Sep; 7(9):5977-5991. PubMed ID: 39120942 [TBL] [Abstract][Full Text] [Related]
17. Design and potential application of PEGylated gold nanoparticles with size-dependent permeation through brain microvasculature. Etame AB; Smith CA; Chan WC; Rutka JT Nanomedicine; 2011 Dec; 7(6):992-1000. PubMed ID: 21616168 [TBL] [Abstract][Full Text] [Related]
18. Competitive adsorption of thiolated poly(ethylene glycol) and alkane-thiols on gold nanoparticles and its effect on cluster formation. Larson-Smith K; Pozzo DC Langmuir; 2012 Sep; 28(37):13157-65. PubMed ID: 22924831 [TBL] [Abstract][Full Text] [Related]
19. Light-triggered crosslinking of gold nanoparticles for remarkably improved radiation therapy and computed tomography imaging of tumors. Cheng X; Sun R; Xia H; Ding J; Yin L; Chai Z; Shi H; Gao M Nanomedicine (Lond); 2019 Nov; 14(22):2941-2955. PubMed ID: 31755353 [No Abstract] [Full Text] [Related]
20. Tuning the surface of Au nanoparticles using poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol): enzyme free and label free sugar sensing in serum samples using resonance Rayleigh scattering spectroscopy. El Kurdi R; Patra D Phys Chem Chem Phys; 2018 Apr; 20(14):9616-9629. PubMed ID: 29578233 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]