BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 19344199)

  • 1. Estimation of future glucose concentrations with subject-specific recursive linear models.
    Eren-Oruklu M; Cinar A; Quinn L; Smith D
    Diabetes Technol Ther; 2009 Apr; 11(4):243-53. PubMed ID: 19344199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental evaluation of a recursive model identification technique for type 1 diabetes.
    Finan DA; Doyle FJ; Palerm CC; Bevier WC; Zisser HC; Jovanovic L; Seborg DE
    J Diabetes Sci Technol; 2009 Sep; 3(5):1192-202. PubMed ID: 20144436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of blood glucose predictors: the prediction-error grid analysis.
    Sivananthan S; Naumova V; Man CD; Facchinetti A; Renard E; Cobelli C; Pereverzyev SV
    Diabetes Technol Ther; 2011 Aug; 13(8):787-96. PubMed ID: 21612393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new index to optimally design and compare continuous glucose monitoring glucose prediction algorithms.
    Facchinetti A; Sparacino G; Trifoglio E; Cobelli C
    Diabetes Technol Ther; 2011 Feb; 13(2):111-9. PubMed ID: 21284477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural network-based real-time prediction of glucose in patients with insulin-dependent diabetes.
    Pappada SM; Cameron BD; Rosman PM; Bourey RE; Papadimos TJ; Olorunto W; Borst MJ
    Diabetes Technol Ther; 2011 Feb; 13(2):135-41. PubMed ID: 21284480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypoglycemia prediction with subject-specific recursive time-series models.
    Eren-Oruklu M; Cinar A; Quinn L
    J Diabetes Sci Technol; 2010 Jan; 4(1):25-33. PubMed ID: 20167164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical and clinical precision of continuous glucose monitoring in Colombian patients treated with insulin infusion pump with automated suspension in hypoglycemia.
    Gómez AM; Marín Sánchez A; Muñoz OM; Colón Peña CA
    Endocrinol Nutr; 2015 Dec; 62(10):485-92. PubMed ID: 26531841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing sensor accuracy for non-adjunct use of continuous glucose monitoring.
    Kovatchev BP; Patek SD; Ortiz EA; Breton MD
    Diabetes Technol Ther; 2015 Mar; 17(3):177-86. PubMed ID: 25436913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An early warning system for hypoglycemic/hyperglycemic events based on fusion of adaptive prediction models.
    Daskalaki E; Nørgaard K; Züger T; Prountzou A; Diem P; Mougiakakou S
    J Diabetes Sci Technol; 2013 May; 7(3):689-98. PubMed ID: 23759402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous Glucose Monitoring: A Review of Recent Studies Demonstrating Improved Glycemic Outcomes.
    Rodbard D
    Diabetes Technol Ther; 2017 Jun; 19(S3):S25-S37. PubMed ID: 28585879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-Term Glucose Forecasting Using a Physiological Model and Deconvolution of the Continuous Glucose Monitoring Signal.
    Liu C; Vehí J; Avari P; Reddy M; Oliver N; Georgiou P; Herrero P
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31597288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a neural network for prediction of glucose concentration in type 1 diabetes patients.
    Pappada SM; Cameron BD; Rosman PM
    J Diabetes Sci Technol; 2008 Sep; 2(5):792-801. PubMed ID: 19885262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-Clinic Evaluation of the MiniMed 670G System "Suspend Before Low" Feature in Children with Type 1 Diabetes.
    Wood MA; Shulman DI; Forlenza GP; Bode BW; Pinhas-Hamiel O; Buckingham BA; Kaiserman KB; Liljenquist DR; Bailey TS; Shin J; Huang S; Chen X; Cordero TL; Lee SW; Kaufman FR
    Diabetes Technol Ther; 2018 Nov; 20(11):731-737. PubMed ID: 30299976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive System Identification for Estimating Future Glucose Concentrations and Hypoglycemia Alarms.
    Eren-Oruklu M; Cinar A; Rollins DK; Quinn L
    Automatica (Oxf); 2012 Aug; 48(8):1892-1897. PubMed ID: 22865931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Let the Algorithm Do the Work": Reduction of Hypoglycemia Using Sensor-Augmented Pump Therapy with Predictive Insulin Suspension (SmartGuard) in Pediatric Type 1 Diabetes Patients.
    Biester T; Kordonouri O; Holder M; Remus K; Kieninger-Baum D; Wadien T; Danne T
    Diabetes Technol Ther; 2017 Mar; 19(3):173-182. PubMed ID: 28099035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the accuracy of continuous glucose-monitoring sensors: continuous glucose-error grid analysis illustrated by TheraSense Freestyle Navigator data.
    Kovatchev BP; Gonder-Frederick LA; Cox DJ; Clarke WL
    Diabetes Care; 2004 Aug; 27(8):1922-8. PubMed ID: 15277418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose Prediction Algorithms from Continuous Monitoring Data: Assessment of Accuracy via Continuous Glucose Error-Grid Analysis.
    Zanderigo F; Sparacino G; Kovatchev B; Cobelli C
    J Diabetes Sci Technol; 2007 Sep; 1(5):645-51. PubMed ID: 19718282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoglycemia Early Alarm Systems Based On Multivariable Models.
    Turksoy K; Bayrak ES; Quinn L; Littlejohn E; Rollins D; Cinar A
    Ind Eng Chem Res; 2013 Sep; 52(35):12329-36. PubMed ID: 24187436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving blood glucose level predictability using machine learning.
    Marcus Y; Eldor R; Yaron M; Shaklai S; Ish-Shalom M; Shefer G; Stern N; Golan N; Dvir AZ; Pele O; Gonen M
    Diabetes Metab Res Rev; 2020 Nov; 36(8):e3348. PubMed ID: 32445286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.