These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19344289)

  • 1. Amniotic fluid stem cells produce robust mineral deposits on biodegradable scaffolds.
    Peister A; Deutsch ER; Kolambkar Y; Hutmacher DW; Guldberg RE
    Tissue Eng Part A; 2009 Oct; 15(10):3129-38. PubMed ID: 19344289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human amniotic fluid stem cells seeded in fibroin scaffold produce in vivo mineralized matrix.
    Maraldi T; Riccio M; Resca E; Pisciotta A; La Sala GB; Ferrari A; Bruzzesi G; Motta A; Migliaresi C; Marzona L; De Pol A
    Tissue Eng Part A; 2011 Nov; 17(21-22):2833-43. PubMed ID: 21864161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell sourcing for bone tissue engineering: amniotic fluid stem cells have a delayed, robust differentiation compared to mesenchymal stem cells.
    Peister A; Woodruff MA; Prince JJ; Gray DP; Hutmacher DW; Guldberg RE
    Stem Cell Res; 2011 Jul; 7(1):17-27. PubMed ID: 21531647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of differentiation stage of amniotic fluid stem cells on bone regeneration.
    Rodrigues MT; Lee BK; Lee SJ; Gomes ME; Reis RL; Atala A; Yoo JJ
    Biomaterials; 2012 Sep; 33(26):6069-78. PubMed ID: 22672834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro osteogenic differentiation of human amniotic fluid-derived stem cells on a poly(lactide-co-glycolide) (PLGA)-bladder submucosa matrix (BSM) composite scaffold for bone tissue engineering.
    Kim J; Jeong SY; Ju YM; Yoo JJ; Smith TL; Khang G; Lee SJ; Atala A
    Biomed Mater; 2013 Feb; 8(1):014107. PubMed ID: 23353783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amniotic fluid-derived stem cells as a cell source for bone tissue engineering.
    Rodrigues MT; Lee SJ; Gomes ME; Reis RL; Atala A; Yoo JJ
    Tissue Eng Part A; 2012 Dec; 18(23-24):2518-27. PubMed ID: 22891759
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Chai YC; Bolander J; Papantoniou I; Patterson J; Vleugels J; Schrooten J; Luyten FP
    Tissue Eng Part A; 2017 Sep; 23(17-18):874-890. PubMed ID: 28338421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteogenic differentiation of dura mater stem cells cultured in vitro on three-dimensional porous scaffolds of poly(epsilon-caprolactone) fabricated via co-extrusion and gas foaming.
    Petrie Aronin CE; Cooper JA; Sefcik LS; Tholpady SS; Ogle RC; Botchwey EA
    Acta Biomater; 2008 Sep; 4(5):1187-97. PubMed ID: 18434267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of bioactive glass particles on osteogenic differentiation of adipose-derived mesenchymal stem cells seeded on lactide and caprolactone based scaffolds.
    Larrañaga A; Alonso-Varona A; Palomares T; Rubio-Azpeitia E; Aldazabal P; Martin FJ; Sarasua JR
    J Biomed Mater Res A; 2015 Dec; 103(12):3815-24. PubMed ID: 26074489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional printed polycaprolactone-based scaffolds provide an advantageous environment for osteogenic differentiation of human adipose-derived stem cells.
    Rumiński S; Ostrowska B; Jaroszewicz J; Skirecki T; Włodarski K; Święszkowski W; Lewandowska-Szumieł M
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e473-e485. PubMed ID: 27599449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bilayered constructs aimed at osteochondral strategies: the influence of medium supplements in the osteogenic and chondrogenic differentiation of amniotic fluid-derived stem cells.
    Rodrigues MT; Lee SJ; Gomes ME; Reis RL; Atala A; Yoo JJ
    Acta Biomater; 2012 Jul; 8(7):2795-806. PubMed ID: 22510402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chitosan-poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model.
    Costa-Pinto AR; Correlo VM; Sol PC; Bhattacharya M; Srouji S; Livne E; Reis RL; Neves NM
    J Tissue Eng Regen Med; 2012 Jan; 6(1):21-8. PubMed ID: 21312336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteogenic differentiation of human amniotic fluid-derived stem cells induced by bone morphogenetic protein-7 and enhanced by nanofibrous scaffolds.
    Sun H; Feng K; Hu J; Soker S; Atala A; Ma PX
    Biomaterials; 2010 Feb; 31(6):1133-9. PubMed ID: 19857889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic Engineering of Mesenchymal Stem Cells for Differential Matrix Deposition on 3D Woven Scaffolds.
    Huynh NPT; Brunger JM; Gloss CC; Moutos FT; Gersbach CA; Guilak F
    Tissue Eng Part A; 2018 Oct; 24(19-20):1531-1544. PubMed ID: 29756533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalization of porous BCP scaffold by generating cell-derived extracellular matrix from rat bone marrow stem cells culture for bone tissue engineering.
    Kim B; Ventura R; Lee BT
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e1256-e1267. PubMed ID: 28752541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanofibrous Mineralized Electrospun Scaffold as a Substrate for Bone Tissue Regeneration.
    Park H; Lim DJ; Lee SH; Park H
    J Biomed Nanotechnol; 2016 Nov; 12(11):2076-82. PubMed ID: 29364624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in vitro assessment of a cell-containing collagenous extracellular matrix-like scaffold for bone tissue engineering.
    Pedraza CE; Marelli B; Chicatun F; McKee MD; Nazhat SN
    Tissue Eng Part A; 2010 Mar; 16(3):781-93. PubMed ID: 19778181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro differentiation of human cord blood-derived unrestricted somatic stem cells into hepatocyte-like cells on poly(epsilon-caprolactone) nanofiber scaffolds.
    Hashemi SM; Soleimani M; Zargarian SS; Haddadi-Asl V; Ahmadbeigi N; Soudi S; Gheisari Y; Hajarizadeh A; Mohammadi Y
    Cells Tissues Organs; 2009; 190(3):135-49. PubMed ID: 19092233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells in 3D printed poly-ε-caprolactone/hydroxyapatite scaffolds combined with bone marrow clots.
    Zheng P; Yao Q; Mao F; Liu N; Xu Y; Wei B; Wang L
    Mol Med Rep; 2017 Oct; 16(4):5078-5084. PubMed ID: 28849142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.