These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19344289)

  • 21. Fibroin scaffold repairs critical-size bone defects in vivo supported by human amniotic fluid and dental pulp stem cells.
    Riccio M; Maraldi T; Pisciotta A; La Sala GB; Ferrari A; Bruzzesi G; Motta A; Migliaresi C; De Pol A
    Tissue Eng Part A; 2012 May; 18(9-10):1006-13. PubMed ID: 22166080
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Double porous poly (Ɛ-caprolactone)/chitosan membrane scaffolds as niches for human mesenchymal stem cells.
    Das P; Salerno S; Remigy JC; Lahitte JF; Bacchin P; De Bartolo L
    Colloids Surf B Biointerfaces; 2019 Dec; 184():110493. PubMed ID: 31525601
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extruded Bioreactor Perfusion Culture Supports the Chondrogenic Differentiation of Human Mesenchymal Stem/Stromal Cells in 3D Porous Poly(ɛ-Caprolactone) Scaffolds.
    Silva JC; Moura CS; Borrecho G; de Matos APA; da Silva CL; Cabral JMS; Bártolo PJ; Linhardt RJ; Ferreira FC
    Biotechnol J; 2020 Feb; 15(2):e1900078. PubMed ID: 31560160
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Porcine bone marrow stromal cell differentiation on heparin-adsorbed poly(e-caprolactone)-tricalcium phosphate-collagen scaffolds.
    Chum ZZ; Woodruff MA; Cool SM; Hutmacher DW
    Acta Biomater; 2009 Nov; 5(9):3305-15. PubMed ID: 19463975
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Osteoblast behaviour on in situ photopolymerizable three-dimensional scaffolds based on D, L-lactide, epsilon-caprolactone and trimethylene carbonate.
    Declercq HA; Cornelissen MJ; Gorskiy TL; Schacht EH
    J Mater Sci Mater Med; 2006 Feb; 17(2):113-22. PubMed ID: 16502243
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Effect of vascular endothelial growth factor 165-loaded porous poly (ε-caprolactone) scaffolds on the osteogenic differentiation of adipose-derived stem cells].
    Xu W; Lu H; Ye J; Yang W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Mar; 32(3):270-275. PubMed ID: 29806274
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The osteogenic differentiation of adipose tissue-derived precursor cells in a 3D scaffold/matrix environment.
    Leong DT; Nah WK; Gupta A; Hutmacher DW; Woodruff MA
    Curr Drug Discov Technol; 2008 Dec; 5(4):319-27. PubMed ID: 19075612
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mathematically defined tissue engineering scaffold architectures prepared by stereolithography.
    Melchels FP; Bertoldi K; Gabbrielli R; Velders AH; Feijen J; Grijpma DW
    Biomaterials; 2010 Sep; 31(27):6909-16. PubMed ID: 20579724
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mineralized collagen scaffolds induce hMSC osteogenesis and matrix remodeling.
    Weisgerber DW; Caliari SR; Harley BA
    Biomater Sci; 2015 Mar; 3(3):533-42. PubMed ID: 25937924
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering.
    Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R
    Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of electrospun thermoplastic polyurethane blended poly (l-lactide-co-e-caprolactone) microyarn scaffolds for engineering of female pelvic-floor tissue.
    Hou M; Wu Q; Dai M; Xu P; Gu C; Jia X; Feng J; Mo X
    Biomed Mater; 2014 Dec; 10(1):015005. PubMed ID: 25546879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering.
    Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W
    J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds.
    Zamani Y; Mohammadi J; Amoabediny G; Visscher DO; Helder MN; Zandieh-Doulabi B; Klein-Nulend J
    Biomed Mater; 2018 Nov; 14(1):015008. PubMed ID: 30421722
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polymeric nanofibrous scaffolds laden with cell-derived extracellular matrix for bone regeneration.
    Junka R; Yu X
    Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():110981. PubMed ID: 32487395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The performance of poly-epsilon-caprolactone scaffolds in a rabbit femur model with and without autologous stromal cells and BMP4.
    Savarino L; Baldini N; Greco M; Capitani O; Pinna S; Valentini S; Lombardo B; Esposito MT; Pastore L; Ambrosio L; Battista S; Causa F; Zeppetelli S; Guarino V; Netti PA
    Biomaterials; 2007 Jul; 28(20):3101-9. PubMed ID: 17412415
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clone-derived human AF-amniotic fluid stem cells are capable of skeletal myogenic differentiation in vitro and in vivo.
    Ma X; Zhang S; Zhou J; Chen B; Shang Y; Gao T; Wang X; Xie H; Chen F
    J Tissue Eng Regen Med; 2012 Aug; 6(8):598-613. PubMed ID: 22396316
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering.
    Ambre AH; Katti DR; Katti KS
    J Biomed Mater Res A; 2015 Jun; 103(6):2077-101. PubMed ID: 25331212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth factor-mediated effects on chondrogenic differentiation of mesenchymal stem cells in 3D semi-IPN poly(vinyl alcohol)-poly(caprolactone) scaffolds.
    Mohan N; Nair PD; Tabata Y
    J Biomed Mater Res A; 2010 Jul; 94(1):146-59. PubMed ID: 20128001
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amniotic fluid stem cells increase embryo survival following injury.
    Prasongchean W; Bagni M; Calzarossa C; De Coppi P; Ferretti P
    Stem Cells Dev; 2012 Mar; 21(5):675-88. PubMed ID: 21905920
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The stimulation of healing within a rat calvarial defect by mPCL-TCP/collagen scaffolds loaded with rhBMP-2.
    Sawyer AA; Song SJ; Susanto E; Chuan P; Lam CX; Woodruff MA; Hutmacher DW; Cool SM
    Biomaterials; 2009 May; 30(13):2479-88. PubMed ID: 19162318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.