BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 19344356)

  • 1. Rhamnolipid biosurfactants decrease the toxicity of chlorinated phenols to Pseudomonas putida DOT-T1E.
    Chrzanowski L; Wick LY; Meulenkamp R; Kaestner M; Heipieper HJ
    Lett Appl Microbiol; 2009 Jun; 48(6):756-62. PubMed ID: 19344356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa.
    Sotirova A; Spasova D; Vasileva-Tonkova E; Galabova D
    Microbiol Res; 2009; 164(3):297-303. PubMed ID: 17416508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa.
    Shreve GS; Inguva S; Gunnam S
    Mol Mar Biol Biotechnol; 1995 Dec; 4(4):331-7. PubMed ID: 8541984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution properties and vesicle formation of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa SP4.
    Pornsunthorntawee O; Chavadej S; Rujiravanit R
    Colloids Surf B Biointerfaces; 2009 Aug; 72(1):6-15. PubMed ID: 19380215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida.
    Cha M; Lee N; Kim M; Kim M; Lee S
    Bioresour Technol; 2008 May; 99(7):2192-9. PubMed ID: 17611103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of rhamnolipid biosurfactants by Pseudomonas aeruginosa DS10-129 in a microfluidic bioreactor.
    Rahman PK; Pasirayi G; Auger V; Ali Z
    Biotechnol Appl Biochem; 2010 Feb; 55(1):45-52. PubMed ID: 19958287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and encapsulation efficiency of rhamnolipid vesicles with cholesterol addition.
    Pornsunthorntawee O; Chavadej S; Rujiravanit R
    J Biosci Bioeng; 2011 Jul; 112(1):102-6. PubMed ID: 21489867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI.
    Nitschke M; Costa SG; Haddad R; Gonçalves LA; Eberlin MN; Contiero J
    Biotechnol Prog; 2005; 21(5):1562-6. PubMed ID: 16209563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designer rhamnolipids by reduction of congener diversity: production and characterization.
    Tiso T; Zauter R; Tulke H; Leuchtle B; Li WJ; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM
    Microb Cell Fact; 2017 Dec; 16(1):225. PubMed ID: 29241456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants.
    Rodrigues LR; Banat IM; van der Mei HC; Teixeira JA; Oliveira R
    J Appl Microbiol; 2006 Mar; 100(3):470-80. PubMed ID: 16478486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alkanols and chlorophenols cause different physiological adaptive responses on the level of cell surface properties and membrane vesicle formation in Pseudomonas putida DOT-T1E.
    Baumgarten T; Vazquez J; Bastisch C; Veron W; Feuilloley MG; Nietzsche S; Wick LY; Heipieper HJ
    Appl Microbiol Biotechnol; 2012 Jan; 93(2):837-45. PubMed ID: 21732242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation.
    Lotfabad TB; Abassi H; Ahmadkhaniha R; Roostaazad R; Masoomi F; Zahiri HS; Ahmadian G; Vali H; Noghabi KA
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):397-405. PubMed ID: 20732795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of the production of rhamnolipids by Pseudomonas aeruginosa UFPEDA 614 in solid-state culture.
    Camilios Neto D; Meira JA; de Araújo JM; Mitchell DA; Krieger N
    Appl Microbiol Biotechnol; 2008 Dec; 81(3):441-8. PubMed ID: 18766338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conditions for effective removal of pyrene from an artificially contaminated soil using Pseudomonas aeruginosa 57SJ rhamnolipids.
    Bordas F; Lafrance P; Villemur R
    Environ Pollut; 2005 Nov; 138(1):69-76. PubMed ID: 15905007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of critical nutritional parameters and their significance in the production of rhamnolipid biosurfactants from Pseudomonas aeruginosa BS-161R.
    Kumar CG; Mamidyala SK; Sujitha P; Muluka H; Akkenapally S
    Biotechnol Prog; 2012; 28(6):1507-16. PubMed ID: 22961871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems.
    Müller MM; Hörmann B; Syldatk C; Hausmann R
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):167-74. PubMed ID: 20217074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil.
    Whang LM; Liu PW; Ma CC; Cheng SS
    J Hazard Mater; 2008 Feb; 151(1):155-63. PubMed ID: 17614195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2.
    Chen SY; Lu WB; Wei YH; Chen WM; Chang JS
    Biotechnol Prog; 2007; 23(3):661-6. PubMed ID: 17461551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. lux-marked Pseudomonas aeruginosa lipopolysaccharide production in the presence of rhamnolipid.
    Chen G; Zhu H
    Colloids Surf B Biointerfaces; 2005 Mar; 41(1):43-8. PubMed ID: 15698755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of rhamnolipids in solid-state cultivation: Characterization, downstream processing and application in the cleaning of contaminated soils.
    Camilios Neto D; Meira JA; Tiburtius E; Zamora PP; Bugay C; Mitchell DA; Krieger N
    Biotechnol J; 2009 May; 4(5):748-55. PubMed ID: 19452471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.