BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 19344571)

  • 1. Semiautomatic landmark-based two-dimensional-three-dimensional image fusion in living mice: correlation of near-infrared fluorescence imaging of Cy5.5-labeled antibodies with flat-panel volume computed tomography.
    Dullin C; Zientkowska M; Napp J; Missbach-Guentner J; Krell HW; Müller F; Grabbe E; Tietze LF; Alves F
    Mol Imaging; 2009; 8(1):2-14. PubMed ID: 19344571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-domain in vivo near infrared fluorescence imaging for evaluation of matriptase as a potential target for the development of novel, inhibitor-based tumor therapies.
    Napp J; Dullin C; Müller F; Uhland K; Petri JB; van de Locht A; Steinmetzer T; Alves F
    Int J Cancer; 2010 Oct; 127(8):1958-74. PubMed ID: 20473895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-infrared fluorescent imaging of tumor apoptosis.
    Petrovsky A; Schellenberger E; Josephson L; Weissleder R; Bogdanov A
    Cancer Res; 2003 Apr; 63(8):1936-42. PubMed ID: 12702586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts.
    Ke S; Wen X; Gurfinkel M; Charnsangavej C; Wallace S; Sevick-Muraca EM; Li C
    Cancer Res; 2003 Nov; 63(22):7870-5. PubMed ID: 14633715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Cy5.5-labeled phage-displayed peptide probe for near-infrared fluorescence imaging of tumor vasculature in living mice.
    Chen K; Yap LP; Park R; Hui X; Wu K; Fan D; Chen X; Conti PS
    Amino Acids; 2012 Apr; 42(4):1329-37. PubMed ID: 21212998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concept of a selective tumour therapy and its evaluation by near-infrared fluorescence imaging and flat-panel volume computed tomography in mice.
    Alves F; Dullin C; Napp J; Missbach-Guentner J; Jannasch K; Mathejczyk J; Pardo LA; Stühmer W; Tietze LF
    Eur J Radiol; 2009 May; 70(2):286-93. PubMed ID: 19285818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo monitoring the fate of Cy5.5-Tat labeled T lymphocytes by quantitative near-infrared fluorescence imaging during acute brain inflammation in a rat model of experimental autoimmune encephalomyelitis.
    Berger C; Gremlich HU; Schmidt P; Cannet C; Kneuer R; Hiestand P; Rausch M; Rudin M
    J Immunol Methods; 2007 May; 323(1):65-77. PubMed ID: 17433359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of different tumor growth kinetics in single transgenic mice with oncogene-induced mammary carcinomas by flat-panel volume computed tomography.
    Jannasch K; Dullin C; Heinlein C; Krepulat F; Wegwitz F; Deppert W; Alves F
    Int J Cancer; 2009 Jul; 125(1):62-70. PubMed ID: 19384954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-infrared fluorescence imaging and histology confirm anomalous edematous signal distribution detected in the rat lung by MRI after allergen challenge.
    Tigani B; Gremlich HU; Cannet C; Zurbruegg S; Quintana HK; Beckmann N
    J Magn Reson Imaging; 2004 Dec; 20(6):967-74. PubMed ID: 15558573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo biodistribution and lifetime analysis of cy5.5-conjugated rituximab in mice bearing lymphoid tumor xenograft using time-domain near-infrared optical imaging.
    Biffi S; Garrovo C; Macor P; Tripodo C; Zorzet S; Secco E; Tedesco F; Lorusso V
    Mol Imaging; 2008; 7(6):272-82. PubMed ID: 19123997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-infrared fluorescence imaging with fluorescently labeled albumin: a novel method for non-invasive optical imaging of blood-brain barrier impairment after focal cerebral ischemia in mice.
    Klohs J; Steinbrink J; Bourayou R; Mueller S; Cordell R; Licha K; Schirner M; Dirnagl U; Lindauer U; Wunder A
    J Neurosci Methods; 2009 May; 180(1):126-32. PubMed ID: 19427539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oleyl-chitosan nanoparticles based on a dual probe for optical/MR imaging in vivo.
    Lee CM; Jang D; Kim J; Cheong SJ; Kim EM; Jeong MH; Kim SH; Kim DW; Lim ST; Sohn MH; Jeong YY; Jeong HJ
    Bioconjug Chem; 2011 Feb; 22(2):186-92. PubMed ID: 21243999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo imaging of experimental arthritis with near-infrared fluorescence.
    Hansch A; Frey O; Sauner D; Hilger I; Haas M; Malich A; Bräuer R; Kaiser WA
    Arthritis Rheum; 2004 Mar; 50(3):961-7. PubMed ID: 15022340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes.
    He X; Wang K; Cheng Z
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2010; 2(4):349-66. PubMed ID: 20564463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo NIRF imaging-guided delivery of a novel NGR-VEGI fusion protein for targeting tumor vasculature.
    Ma W; Li G; Wang J; Yang W; Zhang Y; Conti PS; Chen K
    Amino Acids; 2014 Dec; 46(12):2721-32. PubMed ID: 25182731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing surgical vision by using real-time imaging of αvβ3-integrin targeted near-infrared fluorescent agent.
    Themelis G; Harlaar NJ; Kelder W; Bart J; Sarantopoulos A; van Dam GM; Ntziachristos V
    Ann Surg Oncol; 2011 Nov; 18(12):3506-13. PubMed ID: 21509632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphologic changes of mammary carcinomas in mice over time as monitored by flat-panel detector volume computed tomography.
    Missbach-Guentner J; Dullin C; Kimmina S; Zientkowska M; Domeyer-Missbach M; Malz C; Grabbe E; Stühmer W; Alves F
    Neoplasia; 2008 Jul; 10(7):663-73. PubMed ID: 18592006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in an orthotopic glioblastoma model.
    Hsu AR; Hou LC; Veeravagu A; Greve JM; Vogel H; Tse V; Chen X
    Mol Imaging Biol; 2006; 8(6):315-23. PubMed ID: 17053862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands.
    Becker A; Hessenius C; Licha K; Ebert B; Sukowski U; Semmler W; Wiedenmann B; Grötzinger C
    Nat Biotechnol; 2001 Apr; 19(4):327-31. PubMed ID: 11283589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. uPAR-targeted optical near-infrared (NIR) fluorescence imaging and PET for image-guided surgery in head and neck cancer: proof-of-concept in orthotopic xenograft model.
    Christensen A; Juhl K; Persson M; Charabi BW; Mortensen J; Kiss K; Lelkaitis G; Rubek N; von Buchwald C; Kjær A
    Oncotarget; 2017 Feb; 8(9):15407-15419. PubMed ID: 28039488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.