BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

675 related articles for article (PubMed ID: 19344687)

  • 21. Fully automated classification of HARDI in vivo data using a support vector machine.
    Schnell S; Saur D; Kreher BW; Hennig J; Burkhardt H; Kiselev VG
    Neuroimage; 2009 Jul; 46(3):642-51. PubMed ID: 19285561
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automatic segmentation of brain white matter and white matter lesions in normal aging: comparison of five multispectral techniques.
    Valdés Hernández Mdel C; Gallacher PJ; Bastin ME; Royle NA; Maniega SM; Deary IJ; Wardlaw JM
    Magn Reson Imaging; 2012 Feb; 30(2):222-9. PubMed ID: 22071410
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automatic segmentation and quantitative analysis of white matter hyperintensities on FLAIR images using trimmed-likelihood estimator.
    Wang R; Li C; Wang J; Wei X; Li Y; Hui C; Zhu Y; Zhang S
    Acad Radiol; 2014 Dec; 21(12):1512-23. PubMed ID: 25176451
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automated quantification of white matter disease extent at 3 T: comparison with volumetric readings.
    Hulsey KM; Gupta M; King KS; Peshock RM; Whittemore AR; McColl RW
    J Magn Reson Imaging; 2012 Aug; 36(2):305-11. PubMed ID: 22517404
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel method for automatic determination of different stages of multiple sclerosis lesions in brain MR FLAIR images.
    Khayati R; Vafadust M; Towhidkhah F; Nabavi SM
    Comput Med Imaging Graph; 2008 Mar; 32(2):124-33. PubMed ID: 18055174
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluating intensity normalization on MRIs of human brain with multiple sclerosis.
    Shah M; Xiao Y; Subbanna N; Francis S; Arnold DL; Collins DL; Arbel T
    Med Image Anal; 2011 Apr; 15(2):267-82. PubMed ID: 21233004
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Segmentation and volumetric analysis of the caudate nucleus in Alzheimer's disease.
    Jiji S; Smitha KA; Gupta AK; Pillai VP; Jayasree RS
    Eur J Radiol; 2013 Sep; 82(9):1525-30. PubMed ID: 23664648
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gray and normal-appearing white matter in multiple sclerosis: an MRI perspective.
    Vrenken H; Geurts JJ
    Expert Rev Neurother; 2007 Mar; 7(3):271-9. PubMed ID: 17341175
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel method to derive separate gray and white matter cerebral blood flow measures from MR imaging of acute ischemic stroke patients.
    Simon JE; Bristow MS; Lu H; Lauzon ML; Brown RA; Manjón JV; Eliasziw M; Frayne R; Buchan AM; Demchuk AM; Mitchell JR;
    J Cereb Blood Flow Metab; 2005 Sep; 25(9):1236-43. PubMed ID: 15889045
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automatic segmentation of cerebrospinal fluid, white and gray matter in unenhanced computed tomography images.
    Gupta V; Ambrosius W; Qian G; Blazejewska A; Kazmierski R; Urbanik A; Nowinski WL
    Acad Radiol; 2010 Nov; 17(11):1350-8. PubMed ID: 20634108
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unsupervised MRI segmentation of brain tissues using a local linear model and level set.
    Rivest-Hénault D; Cheriet M
    Magn Reson Imaging; 2011 Feb; 29(2):243-59. PubMed ID: 20951521
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 76-space analysis of grey matter diffusivity: methods and applications.
    Liu T; Young G; Huang L; Chen NK; Wong ST
    Neuroimage; 2006 May; 31(1):51-65. PubMed ID: 16434215
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Segmenting articular cartilage automatically using a voxel classification approach.
    Folkesson J; Dam EB; Olsen OF; Pettersen PC; Christiansen C
    IEEE Trans Med Imaging; 2007 Jan; 26(1):106-15. PubMed ID: 17243589
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A multidimensional segmentation evaluation for medical image data.
    Cárdenes R; de Luis-García R; Bach-Cuadra M
    Comput Methods Programs Biomed; 2009 Nov; 96(2):108-24. PubMed ID: 19446358
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluid-attenuated inversion-recovery SSFP imaging.
    Bangerter NK; Hargreaves BA; Gold GE; Stucker DT; Nishimura DG
    J Magn Reson Imaging; 2006 Dec; 24(6):1426-31. PubMed ID: 17036358
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatic segmentation of white matter hyperintensities by an extended FitzHugh & Nagumo reaction diffusion model.
    Ji S; Ye C; Li F; Sun W; Zhang J; Huang Y; Fang J
    J Magn Reson Imaging; 2013 Feb; 37(2):343-50. PubMed ID: 23023955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A fully automated algorithm under modified FCM framework for improved brain MR image segmentation.
    Sikka K; Sinha N; Singh PK; Mishra AK
    Magn Reson Imaging; 2009 Sep; 27(7):994-1004. PubMed ID: 19395212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Imaging age-related cognitive decline: A comparison of diffusion tensor and magnetization transfer MRI.
    Schiavone F; Charlton RA; Barrick TR; Morris RG; Markus HS
    J Magn Reson Imaging; 2009 Jan; 29(1):23-30. PubMed ID: 19097099
    [TBL] [Abstract][Full Text] [Related]  

  • 39. State of the art survey on MRI brain tumor segmentation.
    Gordillo N; Montseny E; Sobrevilla P
    Magn Reson Imaging; 2013 Oct; 31(8):1426-38. PubMed ID: 23790354
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relaxo-volumetric multispectral quantitative magnetic resonance imaging of the brain over the human lifespan: global and regional aging patterns.
    Saito N; Sakai O; Ozonoff A; Jara H
    Magn Reson Imaging; 2009 Sep; 27(7):895-906. PubMed ID: 19520539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.