BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 19344775)

  • 1. Dependencies between stimuli and spatially independent fMRI sources: towards brain correlates of natural stimuli.
    Ylipaavalniemi J; Savia E; Malinen S; Hari R; Vigário R; Kaski S
    Neuroimage; 2009 Oct; 48(1):176-85. PubMed ID: 19344775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards natural stimulation in fMRI--issues of data analysis.
    Malinen S; Hlushchuk Y; Hari R
    Neuroimage; 2007 Mar; 35(1):131-9. PubMed ID: 17208459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. fMRI during natural sleep as a method to study brain function during early childhood.
    Redcay E; Kennedy DP; Courchesne E
    Neuroimage; 2007 Dec; 38(4):696-707. PubMed ID: 17904385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Change-driven cortical activation in multisensory environments: an MEG study.
    Tanaka E; Kida T; Inui K; Kakigi R
    Neuroimage; 2009 Nov; 48(2):464-74. PubMed ID: 19559795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semantics and the multisensory brain: how meaning modulates processes of audio-visual integration.
    Doehrmann O; Naumer MJ
    Brain Res; 2008 Nov; 1242():136-50. PubMed ID: 18479672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benefits of multisensory learning.
    Shams L; Seitz AR
    Trends Cogn Sci; 2008 Nov; 12(11):411-7. PubMed ID: 18805039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of specific brain activity by the perceptual analysis of very subtle geometrical relationships of the Mangina-Test stimuli: a functional magnetic resonance imaging (fMRI) investigation in young healthy adults.
    Mangina CA; Beuzeron-Mangina H; Casarotto S; Chiarenza GA; Pietrini P; Ricciardi E
    Int J Psychophysiol; 2009 Aug; 73(2):157-63. PubMed ID: 19414049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. When a high-intensity "distractor" is better then a low-intensity one: modeling the effect of an auditory or tactile nontarget stimulus on visual saccadic reaction time.
    Diederich A; Colonius H
    Brain Res; 2008 Nov; 1242():219-30. PubMed ID: 18573240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FMRI adaptation during performance of learned arbitrary visuomotor conditional associations.
    Chouinard PA; Goodale MA
    Neuroimage; 2009 Dec; 48(4):696-706. PubMed ID: 19619662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsupervised analysis of fMRI data using kernel canonical correlation.
    Hardoon DR; Mourão-Miranda J; Brammer M; Shawe-Taylor J
    Neuroimage; 2007 Oct; 37(4):1250-9. PubMed ID: 17686634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of functional magnetic resonance imaging in the study of brain development, injury, and recovery in the newborn.
    Seghier ML; Hüppi PS
    Semin Perinatol; 2010 Feb; 34(1):79-86. PubMed ID: 20109975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural correlates of "analytical-specific visual perception" and degree of task difficulty as investigated by the Mangina-Test: a functional magnetic resonance imaging (fMRI) study in young healthy adults.
    Mangina CA; Beuzeron-Mangina H; Ricciardi E; Pietrini P; Chiarenza GA; Casarotto S
    Int J Psychophysiol; 2009 Aug; 73(2):150-6. PubMed ID: 19414052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural network of speech monitoring overlaps with overt speech production and comprehension networks: a sequential spatial and temporal ICA study.
    van de Ven V; Esposito F; Christoffels IK
    Neuroimage; 2009 Oct; 47(4):1982-91. PubMed ID: 19481159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blind source separation of fMRI data by means of factor analytic transformations.
    Langers DR
    Neuroimage; 2009 Aug; 47(1):77-87. PubMed ID: 19362596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A functional-magnetic-resonance-imaging investigation of cortical activation from moving vibrotactile stimuli on the fingertip.
    Summers IR; Francis ST; Bowtell RW; McGlone FP; Clemence M
    J Acoust Soc Am; 2009 Feb; 125(2):1033-9. PubMed ID: 19206877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers.
    De Martino F; Gentile F; Esposito F; Balsi M; Di Salle F; Goebel R; Formisano E
    Neuroimage; 2007 Jan; 34(1):177-94. PubMed ID: 17070708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Common neural mechanisms for explicit timing in the sub-second range.
    Shih LY; Kuo WJ; Yeh TC; Tzeng OJ; Hsieh JC
    Neuroreport; 2009 Jul; 20(10):897-901. PubMed ID: 19451837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synesthetic congruency modulates the temporal ventriloquism effect.
    Parise C; Spence C
    Neurosci Lett; 2008 Sep; 442(3):257-61. PubMed ID: 18638522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural correlates of cue-unique outcome expectations under differential outcomes training: an fMRI study.
    Mok LW; Thomas KM; Lungu OV; Overmier JB
    Brain Res; 2009 Apr; 1265():111-27. PubMed ID: 19401182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-window-of-integration (TWIN) model for saccadic reaction time: effect of auditory masker level on visual-auditory spatial interaction in elevation.
    Colonius H; Diederich A; Steenken R
    Brain Topogr; 2009 May; 21(3-4):177-84. PubMed ID: 19337824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.