These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 19345007)
1. Mercury in soils and plants in an abandoned cinnabar mining area (SW Spain). García-Sánchez A; Murciego A; Alvarez-Ayuso E; Regina IS; Rodríguez-González MA J Hazard Mater; 2009 Sep; 168(2-3):1319-24. PubMed ID: 19345007 [TBL] [Abstract][Full Text] [Related]
2. Mercury content in vegetation and soils of the Almadén mining area (Spain). Millán R; Gamarra R; Schmid T; Sierra MJ; Quejido AJ; Sánchez DM; Cardona AI; Fernández M; Vera R Sci Total Environ; 2006 Sep; 368(1):79-87. PubMed ID: 16343601 [TBL] [Abstract][Full Text] [Related]
3. Binding of mercury in soils and attic dust in the Idrija mercury mine area (Slovenia). Gosar M; Sajn R; Biester H Sci Total Environ; 2006 Oct; 369(1-3):150-62. PubMed ID: 16764912 [TBL] [Abstract][Full Text] [Related]
4. Distribution and mobility of mercury in soils of a gold mining region, Cuyuni river basin, Venezuela. Santos-Francés F; García-Sánchez A; Alonso-Rojo P; Contreras F; Adams M J Environ Manage; 2011 Apr; 92(4):1268-76. PubMed ID: 21215510 [TBL] [Abstract][Full Text] [Related]
5. High altitude artisanal small-scale gold mines are hot spots for Mercury in soils and plants. Terán-Mita TA; Faz A; Salvador F; Arocena JM; Acosta JA Environ Pollut; 2013 Feb; 173():103-9. PubMed ID: 23202639 [TBL] [Abstract][Full Text] [Related]
6. Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China. Xiao T; Guha J; Boyle D; Liu CQ; Chen J Sci Total Environ; 2004 Jan; 318(1-3):223-44. PubMed ID: 14654287 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of mercury pollution in cultivated and wild plants from two small communities of the Tapajós gold mining reserve, Pará State, Brazil. Egler SG; Rodrigues-Filho S; Villas-Bôas RC; Beinhoff C Sci Total Environ; 2006 Sep; 368(1):424-33. PubMed ID: 16236346 [TBL] [Abstract][Full Text] [Related]
8. Mercury availability by operationally defined fractionation in granulometric distributions of soils and mine wastes from an abandoned cinnabar mine. Fernández-Martínez R; Loredo J; Ordóñez A; Rucandio I Environ Sci Process Impacts; 2014 May; 16(5):1069-75. PubMed ID: 24664209 [TBL] [Abstract][Full Text] [Related]
9. The Almadén district (Spain): anatomy of one of the world's largest Hg-contaminated sites. Higueras P; Oyarzun R; Lillo J; Sánchez-Hernández JC; Molina JA; Esbrí JM; Lorenzo S Sci Total Environ; 2006 Mar; 356(1-3):112-24. PubMed ID: 15950266 [TBL] [Abstract][Full Text] [Related]
10. Mercury bioaccumulation and phytotoxicity in two wild plant species of Almadén area. Moreno-Jiménez E; Gamarra R; Carpena-Ruiz RO; Millán R; Peñalosa JM; Esteban E Chemosphere; 2006 Jun; 63(11):1969-73. PubMed ID: 16293291 [TBL] [Abstract][Full Text] [Related]
11. Mercury accumulation in upland acid forest ecosystems nearby a coal-fired power-plant in southwest Europe (Galicia, NW Spain). Nóvoa-Muñoz JC; Pontevedra-Pombal X; Martínez-Cortizas A; García-Rodeja Gayoso E Sci Total Environ; 2008 May; 394(2-3):303-12. PubMed ID: 18295823 [TBL] [Abstract][Full Text] [Related]
12. Mercury emission and dispersion models from soils contaminated by cinnabar mining and metallurgy. Llanos W; Kocman D; Higueras P; Horvat M J Environ Monit; 2011 Dec; 13(12):3460-8. PubMed ID: 22037967 [TBL] [Abstract][Full Text] [Related]
13. Environmental impact of toxic metals and metalloids from the Muñón Cimero mercury-mining area (Asturias, Spain). Loredo J; Ordóñez A; Alvarez R J Hazard Mater; 2006 Aug; 136(3):455-67. PubMed ID: 16504385 [TBL] [Abstract][Full Text] [Related]
14. Mercury fractionation in contaminated soils from the Idrija mercury mine region. Kocman D; Horvat M; Kotnik J J Environ Monit; 2004 Aug; 6(8):696-703. PubMed ID: 15292953 [TBL] [Abstract][Full Text] [Related]
15. Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study. Domínguez MT; Marañón T; Murillo JM; Schulin R; Robinson BH Environ Pollut; 2008 Mar; 152(1):50-9. PubMed ID: 17602809 [TBL] [Abstract][Full Text] [Related]
16. Mercury accumulation in grass and forb species as a function of atmospheric carbon dioxide concentrations and mercury exposures in air and soil. Millhollen AG; Obrist D; Gustin MS Chemosphere; 2006 Oct; 65(5):889-97. PubMed ID: 16631233 [TBL] [Abstract][Full Text] [Related]
17. Total mercury, organic mercury and mercury fractionation in soil profiles from the Almadén mercury mine area. Fernández-Martínez R; Rucandio I Environ Sci Process Impacts; 2014 Feb; 16(2):333-40. PubMed ID: 24441501 [TBL] [Abstract][Full Text] [Related]
18. Capability of selected crop plants for shoot mercury accumulation from polluted soils: phytoremediation perspectives. Rodriguez L; Rincón J; Asencio I; Rodríguez-Castellanos L Int J Phytoremediation; 2007; 9(1):1-13. PubMed ID: 18246711 [TBL] [Abstract][Full Text] [Related]
19. Plant community tolerant to trace elements growing on the degraded soils of São Domingos mine in the south east of Portugal: environmental implications. Freitas H; Prasad MN; Pratas J Environ Int; 2004 Mar; 30(1):65-72. PubMed ID: 14664866 [TBL] [Abstract][Full Text] [Related]
20. Mercury accumulation in soils and plants in the Almadén mining district, Spain: one of the most contaminated sites on Earth. Molina JA; Oyarzun R; Esbrí JM; Higueras P Environ Geochem Health; 2006 Oct; 28(5):487-98. PubMed ID: 17013679 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]