BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 19345111)

  • 81. Towards unambiguous transcript mapping in the allotetraploid Brassica napus.
    Parkin IA; Clarke WE; Sidebottom C; Zhang W; Robinson SJ; Links MG; Karcz S; Higgins EE; Fobert P; Sharpe AG
    Genome; 2010 Nov; 53(11):929-38. PubMed ID: 21076508
    [TBL] [Abstract][Full Text] [Related]  

  • 82. High-throughput multiplex cpDNA resequencing clarifies the genetic diversity and genetic relationships among Brassica napus, Brassica rapa and Brassica oleracea.
    Qiao J; Cai M; Yan G; Wang N; Li F; Chen B; Gao G; Xu K; Li J; Wu X
    Plant Biotechnol J; 2016 Jan; 14(1):409-18. PubMed ID: 26031705
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Complexities of chromosome landing in a highly duplicated genome: toward map-based cloning of a gene controlling blackleg resistance in Brassica napus.
    Mayerhofer R; Wilde K; Mayerhofer M; Lydiate D; Bansal VK; Good AG; Parkin IA
    Genetics; 2005 Dec; 171(4):1977-88. PubMed ID: 16143600
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Brassica napus possesses an expanded set of polygalacturonase inhibitor protein genes that are differentially regulated in response to Sclerotinia sclerotiorum infection, wounding and defense hormone treatment.
    Hegedus DD; Li R; Buchwaldt L; Parkin I; Whitwill S; Coutu C; Bekkaoui D; Rimmer SR
    Planta; 2008 Jul; 228(2):241-53. PubMed ID: 18431596
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Analysis of gene expression in resynthesized Brassica napus Allopolyploids using arabidopsis 70mer oligo microarrays.
    Gaeta RT; Yoo SY; Pires JC; Doerge RW; Chen ZJ; Osborn TC
    PLoS One; 2009; 4(3):e4760. PubMed ID: 19274085
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Genome-Wide Characterization of High-Affinity Nitrate Transporter 2 (NRT2) Gene Family in
    Du RJ; Wu ZX; Yu ZX; Li PF; Mu JY; Zhou J; Li JN; Du H
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563356
    [TBL] [Abstract][Full Text] [Related]  

  • 87. The biocontrol agent Pseudomonas chlororaphis PA23 primes Brassica napus defenses through distinct gene networks.
    Duke KA; Becker MG; Girard IJ; Millar JL; Dilantha Fernando WG; Belmonte MF; de Kievit TR
    BMC Genomics; 2017 Jun; 18(1):467. PubMed ID: 28629321
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Involvement of genes encoding ABI1 protein phosphatases in the response of Brassica napus L. to drought stress.
    Babula-Skowrońska D; Ludwików A; Cieśla A; Olejnik A; Cegielska-Taras T; Bartkowiak-Broda I; Sadowski J
    Plant Mol Biol; 2015 Jul; 88(4-5):445-57. PubMed ID: 26059040
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola (Brassica napus) confers enhanced resistance to Sclerotinia sclerotiorum.
    Ziaei M; Motallebi M; Zamani MR; Panjeh NZ
    Biotechnol Lett; 2016 Jun; 38(6):1021-32. PubMed ID: 26875090
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Expression, mapping, and genetic variability of Brassica napus disease resistance gene analogues.
    Fourmann M; Chariot F; Froger N; Delourme R; Brunel D
    Genome; 2001 Dec; 44(6):1083-99. PubMed ID: 11768212
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Small RNA changes in synthetic Brassica napus.
    Fu Y; Xiao M; Yu H; Mason AS; Yin J; Li J; Zhang D; Fu D
    Planta; 2016 Sep; 244(3):607-22. PubMed ID: 27107747
    [TBL] [Abstract][Full Text] [Related]  

  • 92. BnaMPK6 is a determinant of quantitative disease resistance against Sclerotinia sclerotiorum in oilseed rape.
    Wang Z; Zhao FY; Tang MQ; Chen T; Bao LL; Cao J; Li YL; Yang YH; Zhu KM; Liu S; Tan XL
    Plant Sci; 2020 Feb; 291():110362. PubMed ID: 31928657
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Genes encoding the alpha-carboxyltransferase subunit of acetyl-CoA carboxylase from Brassica napus and parental species: cloning, expression patterns, and evolution.
    Li ZG; Yin WB; Guo H; Song LY; Chen YH; Guan RZ; Wang JQ; Wang RR; Hu ZM
    Genome; 2010 May; 53(5):360-70. PubMed ID: 20616867
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Defense to Sclerotinia sclerotiorum in oilseed rape is associated with the sequential activations of salicylic acid signaling and jasmonic acid signaling.
    Wang Z; Tan X; Zhang Z; Gu S; Li G; Shi H
    Plant Sci; 2012 Mar; 184():75-82. PubMed ID: 22284712
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Genes encoding the biotin carboxylase subunit of acetyl-CoA carboxylase from Brassica napus and parental species: cloning, expression patterns, and evolution.
    Li ZG; Yin WB; Song LY; Chen YH; Guan RZ; Wang JQ; Wang RR; Hu ZM
    Genome; 2011 Mar; 54(3):202-11. PubMed ID: 21423283
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Self-compatibility in Brassica napus is caused by independent mutations in S-locus genes.
    Okamoto S; Odashima M; Fujimoto R; Sato Y; Kitashiba H; Nishio T
    Plant J; 2007 May; 50(3):391-400. PubMed ID: 17425715
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Genome-wide identification, functional prediction, and evolutionary analysis of the R2R3-MYB superfamily in Brassica napus.
    Hajiebrahimi A; Owji H; Hemmati S
    Genome; 2017 Oct; 60(10):797-814. PubMed ID: 28732175
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Plant hormones in defense response of Brassica napus to Sclerotinia sclerotiorum - reassessing the role of salicylic acid in the interaction with a necrotroph.
    Nováková M; Sašek V; Dobrev PI; Valentová O; Burketová L
    Plant Physiol Biochem; 2014 Jul; 80():308-17. PubMed ID: 24837830
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Genome-wide transcriptomic analyses provide insights into the lifestyle transition and effector repertoire of Leptosphaeria maculans during the colonization of Brassica napus seedlings.
    Haddadi P; Ma L; Wang H; Borhan MH
    Mol Plant Pathol; 2016 Oct; 17(8):1196-210. PubMed ID: 26679637
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Homeolog loss and expression changes in natural populations of the recently and repeatedly formed allotetraploid Tragopogon mirus (Asteraceae).
    Koh J; Soltis PS; Soltis DE
    BMC Genomics; 2010 Feb; 11():97. PubMed ID: 20141639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.