These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 19345356)

  • 1. Mechanical behavior of human aortas: Experiments, material constants and 3-D finite element modeling including residual stress.
    Labrosse MR; Beller CJ; Mesana T; Veinot JP
    J Biomech; 2009 May; 42(8):996-1004. PubMed ID: 19345356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical characterization of human aortas from pressurization testing and a paradigm shift for circumferential residual stress.
    Labrosse MR; Gerson ER; Veinot JP; Beller CJ
    J Mech Behav Biomed Mater; 2013 Jan; 17():44-55. PubMed ID: 23127625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new three-dimensional exponential material model of the coronary arterial wall to include shear stress due to torsion.
    Van Epps JS; Vorp DA
    J Biomech Eng; 2008 Oct; 130(5):051001. PubMed ID: 19045508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significant material property differences between the porcine ascending aorta and aortic sinuses.
    Gundiah N; Matthews PB; Karimi R; Azadani A; Guccione J; Guy TS; Saloner D; Tseng EE
    J Heart Valve Dis; 2008 Nov; 17(6):606-13. PubMed ID: 19137790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of mechanical properties of human ascending aorta and aortic sinuses.
    Azadani AN; Chitsaz S; Matthews PB; Jaussaud N; Leung J; Tsinman T; Ge L; Tseng EE
    Ann Thorac Surg; 2012 Jan; 93(1):87-94. PubMed ID: 22075218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circumferential variations of mechanical behavior of the porcine thoracic aorta during the inflation test.
    Kim J; Baek S
    J Biomech; 2011 Jul; 44(10):1941-7. PubMed ID: 21550609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta.
    Holzapfel GA; Ogden RW
    J R Soc Interface; 2010 May; 7(46):787-99. PubMed ID: 19828496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear model of human descending thoracic aortic segments with residual stresses.
    Breslavsky I; Amabili M
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1839-1855. PubMed ID: 30073613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Residual stress distribution in a lamellar model of the arterial wall.
    Haghighipour N; Tafazzoli-Shadpour M; Avolio A
    J Med Eng Technol; 2010; 34(7-8):422-8. PubMed ID: 20873982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blunt trauma and acute aortic syndrome: a three-layer finite-element model of the aortic wall.
    Zhao AR; Field ML; Digges K; Richens D
    Eur J Cardiothorac Surg; 2008 Sep; 34(3):623-9. PubMed ID: 18539473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ascending thoracic aortic aneurysms are associated with compositional remodeling and vessel stiffening but not weakening in age-matched subjects.
    Iliopoulos DC; Kritharis EP; Giagini AT; Papadodima SA; Sokolis DP
    J Thorac Cardiovasc Surg; 2009 Jan; 137(1):101-9. PubMed ID: 19154911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.
    Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M
    J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Longitudinal residual strain and stress-strain relationship in rat small intestine.
    Dou Y; Fan Y; Zhao J; Gregersen H
    Biomed Eng Online; 2006 Jun; 5():37. PubMed ID: 16759387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of longitudinal pre-stretch and radial constraint on the stress distribution in the vessel wall: a new hypothesis.
    Zhang W; Herrera C; Atluri SN; Kassab GS
    Mech Chem Biosyst; 2005; 2(1):41-52. PubMed ID: 16708471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex distributions of residual stress and strain in the mouse left ventricle: experimental and theoretical models.
    Omens JH; McCulloch AD; Criscione JC
    Biomech Model Mechanobiol; 2003 Apr; 1(4):267-77. PubMed ID: 14586695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening.
    Weisbecker H; Pierce DM; Regitnig P; Holzapfel GA
    J Mech Behav Biomed Mater; 2012 Aug; 12():93-106. PubMed ID: 22659370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational stress-deformation analysis of arterial walls including high-pressure response.
    Holzapfel GA; Gasser TC
    Int J Cardiol; 2007 Mar; 116(1):78-85. PubMed ID: 16822562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking.
    Pierce DM; Trobin W; Trattnig S; Bischof H; Holzapfel GA
    J Biomech Eng; 2009 Sep; 131(9):091006. PubMed ID: 19725695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the strain and stress distribution in the wall of the developing and mature rat aorta.
    Rachev A; Greenwald SE; Kane TP; Moore JE; Meister JJ
    Biorheology; 1995; 32(4):473-85. PubMed ID: 7579211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperelastic behavior of porcine aorta segment under extension-inflation tests fitted with various phenomenological models.
    Veljković DŽ; Ranković VJ; Pantović SB; Rosić MA; Kojić MR
    Acta Bioeng Biomech; 2014; 16(3):37-45. PubMed ID: 25308095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.