These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 19345459)

  • 1. Dynamic and equilibrium studies of the RDX removal from soil using CMC-coated zerovalent iron nanoparticles.
    Naja G; Apiratikul R; Pavasant P; Volesky B; Hawari J
    Environ Pollut; 2009; 157(8-9):2405-12. PubMed ID: 19345459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using zerovalent iron nanoparticles.
    Naja G; Halasz A; Thiboutot S; Ampleman G; Hawari J
    Environ Sci Technol; 2008 Jun; 42(12):4364-70. PubMed ID: 18605556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TNT and RDX degradation and extraction from contaminated soil using subcritical water.
    Islam MN; Shin MS; Jo YT; Park JH
    Chemosphere; 2015 Jan; 119():1148-1152. PubMed ID: 25460755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe-Mn oxide nanoparticles.
    An B; Zhao D
    J Hazard Mater; 2012 Apr; 211-212():332-41. PubMed ID: 22119304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ remediation of hexavalent chromium contaminated soil by CMC-stabilized nanoscale zero-valent iron composited with biochar.
    Zhang R; Zhang N; Fang Z
    Water Sci Technol; 2018 Mar; 77(5-6):1622-1631. PubMed ID: 29595164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI.
    Wang Y; Fang Z; Kang Y; Tsang EP
    J Hazard Mater; 2014 Jun; 275():230-7. PubMed ID: 24880637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of carboxymethyl cellulose coating on iron sulphide nanoparticles stability, transport, and mobilization potential of trace metals present in soils and sediment.
    Van Koetsem F; Van Havere L; Du Laing G
    J Environ Manage; 2016 Mar; 168():210-8. PubMed ID: 26708651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of γ-HCH spiked soil using stabilized Pd/Fe0 bimetallic nanoparticles: pathways, kinetics and effect of reaction conditions.
    Singh R; Misra V; Mudiam MK; Chauhan LK; Singh RP
    J Hazard Mater; 2012 Oct; 237-238():355-64. PubMed ID: 22981285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of selenite in soil and groundwater using stabilized Fe-Mn binary oxide nanoparticles.
    Xie W; Liang Q; Qian T; Zhao D
    Water Res; 2015 Mar; 70():485-94. PubMed ID: 25577492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction and persulfate oxidation of nitro explosives in contaminated soils using Fe-bearing materials.
    Oh SY; Yoon HS; Jeong TY; Kim SD; Kim DW
    Environ Sci Process Impacts; 2016 Jul; 18(7):863-71. PubMed ID: 27327861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential biodegradation of TNT, RDX and HMX in a mixture.
    Sagi-Ben Moshe S; Ronen Z; Dahan O; Weisbrod N; Groisman L; Adar E; Nativ R
    Environ Pollut; 2009; 157(8-9):2231-8. PubMed ID: 19428165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of carboxymethyl cellulose-coated zerovalent iron nanoparticles in a sand tank: Effects of sand grain size, nanoparticle concentration and injection velocity.
    Li J; Rajajayavel SRC; Ghoshal S
    Chemosphere; 2016 May; 150():8-16. PubMed ID: 26891351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remediation of hexavalent chromium spiked soil by using synthesized iron sulfide particles.
    Li Y; Wang W; Zhou L; Liu Y; Mirza ZA; Lin X
    Chemosphere; 2017 Feb; 169():131-138. PubMed ID: 27870934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent iron nanoparticles.
    Wang Q; Qian H; Yang Y; Zhang Z; Naman C; Xu X
    J Contam Hydrol; 2010 May; 114(1-4):35-42. PubMed ID: 20304518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in a contaminated vadose zone.
    Ronen Z; Yanovich Y; Goldin R; Adar E
    Chemosphere; 2008 Nov; 73(9):1492-8. PubMed ID: 18774159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of monodispersed CMC-stabilized Fe-Cu bimetal nanoparticles for in situ reductive dechlorination of 1,2,4-trichlorobenzene.
    Cao J; Xu R; Tang H; Tang S; Cao M
    Sci Total Environ; 2011 May; 409(11):2336-41. PubMed ID: 21439609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles.
    Gong Y; Liu Y; Xiong Z; Kaback D; Zhao D
    Nanotechnology; 2012 Jul; 23(29):294007. PubMed ID: 22743738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-situ degradation of soil-sorbed 17β-estradiol using carboxymethyl cellulose stabilized manganese oxide nanoparticles: Column studies.
    Han B; Zhang M; Zhao D
    Environ Pollut; 2017 Apr; 223():238-246. PubMed ID: 28108162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of aqueous and soil-sorbed estradiol using a new class of stabilized manganese oxide nanoparticles.
    Han B; Zhang M; Zhao D; Feng Y
    Water Res; 2015 Mar; 70():288-99. PubMed ID: 25543239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.