These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 19345490)

  • 1. Mobility and sorption of bis-2-chloroethyl ether in an aquifer material.
    Bednar AJ; Kirgan RA; Karn RA; Donovan B; Mohn MF; Sirkis DM
    J Hazard Mater; 2009 Sep; 168(2-3):1041-6. PubMed ID: 19345490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Column studies on transport of deicing additive benzotriazole in a sandy aquifer and a zerovalent iron barrier.
    Jia Y; Breedveld GD; Aagaard P
    Chemosphere; 2007 Nov; 69(9):1409-18. PubMed ID: 17588639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of bis(2-chloroethyl) ether by Xanthobacter sp. strain ENV481.
    McClay K; Schaefer CE; Vainberg S; Steffan RJ
    Appl Environ Microbiol; 2007 Nov; 73(21):6870-5. PubMed ID: 17873075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of anaerobic biodegradation of bis(2-chloroethyl) ether in groundwater using carbon and chlorine compound-specific isotope analysis.
    Segal DC; Kuder T; Kolhatkar R
    Sci Total Environ; 2018 Jun; 625():696-705. PubMed ID: 29306157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of mass transfer characteristics for DNAPL source depletion and contaminant flux in a highly characterized glaciofluvial aquifer.
    Maji R; Sudicky EA
    J Contam Hydrol; 2008 Nov; 102(1-2):105-19. PubMed ID: 18929427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation kinetics and mechanism of bis(2-chloroethyl) ether by electromagnetic induction electrodeless lamp activated persulfate.
    Zhou Y; Shi J; Li Y; Long T; Zhu X; Sun C; Wang Y
    Chemosphere; 2020 Dec; 261():127709. PubMed ID: 32745742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigations of tungsten mobility in soil using column tests.
    Bednar AJ; Boyd RE; Jones WT; McGrath CJ; Johnson DR; Chappell MA; Ringelberg DB
    Chemosphere; 2009 May; 75(8):1049-56. PubMed ID: 19232431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation.
    Parker BL; Chapman SW; Guilbeault MA
    J Contam Hydrol; 2008 Nov; 102(1-2):86-104. PubMed ID: 18775583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The significance of heterogeneity on mass flux from DNAPL source zones: an experimental investigation.
    Page JW; Soga K; Illangasekare T
    J Contam Hydrol; 2007 Dec; 94(3-4):215-34. PubMed ID: 17706832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Key features of artificial aquifers for use in modeling contaminant transport.
    Close M; Bright J; Wang F; Pang L; Manning M
    Ground Water; 2008; 46(6):814-28. PubMed ID: 18657117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of amphiphilic polyurethane nanoparticles on sorption-desorption of phenanthrene in aquifer material.
    Kim JY; Shim SB; Shim JK
    J Hazard Mater; 2003 Mar; 98(1-3):145-60. PubMed ID: 12628783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption and transport of acetaminophen, 17alpha-ethynyl estradiol, nalidixic acid with low organic content aquifer sand.
    Lorphensri O; Sabatini DA; Kibbey TC; Osathaphan K; Saiwan C
    Water Res; 2007 May; 41(10):2180-8. PubMed ID: 17399763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of bis(2-chloroethyl)ether and bis(2-chloroisopropyl)ether in the rat.
    Lingg RD; Kaylor WH; Pyle SM; Domino MM; Smith CC; Wolfe GF
    Arch Environ Contam Toxicol; 1982; 11(2):173-83. PubMed ID: 6807217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Groundwater remediation by an in situ biobarrier: a bench scale feasibility test for methyl tert-butyl ether and other gasoline compounds.
    Saponaro S; Negri M; Sezenna E; Bonomo L; Sorlini C
    J Hazard Mater; 2009 Aug; 167(1-3):545-52. PubMed ID: 19200654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of nonlinear sorption of N-heterocyclic organic contaminates in soil columns.
    Bi E; Zhang L; Schmidt TC; Haderlein SB
    J Contam Hydrol; 2009 Jun; 107(1-2):58-65. PubMed ID: 19419791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavior and characteristics of dissolved organic matter during column studies of soil aquifer treatment.
    Xue S; Zhao QL; Wei LL; Ren NQ
    Water Res; 2009 Feb; 43(2):499-507. PubMed ID: 18995878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methanotrophic bacteria and facilitated transport of pollutants in aquifer material.
    Jenkins MB; Chen JH; Kadner DJ; Lion LW
    Appl Environ Microbiol; 1994 Oct; 60(10):3491-8. PubMed ID: 16349401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption and mass fluxes of sulfonated naphthalene formaldehyde condensates in aquifers.
    Ruckstuhl S; Suter MJ; Giger W
    J Contam Hydrol; 2003 Dec; 67(1-4):1-12. PubMed ID: 14607466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption behavior of a synthetic antioxidant, polycyclic musk, and an organophosphate insecticide in wastewater sludge.
    Thomas SM; Bodour AA; Murray KE; Inniss EC
    Water Sci Technol; 2009; 60(1):145-54. PubMed ID: 19587412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of surfactant-enhanced mass removal and flux reduction in 3D correlated permeability fields using magnetic resonance imaging.
    Zhang C; Werth CJ; Webb AG
    J Contam Hydrol; 2008 Sep; 100(3-4):116-26. PubMed ID: 18676059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.