These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 19345497)
1. High-sensitivity detection of proteins using gel electrophoresis and atomic force microscopy. Sekiguchi H; Hidaka A; Shiga Y; Ikai A; Osada T Ultramicroscopy; 2009 Jul; 109(8):916-22. PubMed ID: 19345497 [TBL] [Abstract][Full Text] [Related]
2. High sensitivity detection of protein molecules picked up on a probe of atomic force microscope based on the fluorescence detection by a total internal reflection fluorescence microscope. Yamada T; Afrin R; Arakawa H; Ikai A FEBS Lett; 2004 Jul; 569(1-3):59-64. PubMed ID: 15225609 [TBL] [Abstract][Full Text] [Related]
3. Real-time imaging of DNA-streptavidin complex formation in solution using a high-speed atomic force microscope. Kobayashi M; Sumitomo K; Torimitsu K Ultramicroscopy; 2007; 107(2-3):184-90. PubMed ID: 16949754 [TBL] [Abstract][Full Text] [Related]
4. Characterization of mixed self-assembled monolayers for immobilization of streptavidin using chemical force microscopy. Kim H; Noh J; Hara M; Lee H Ultramicroscopy; 2008 Sep; 108(10):1140-3. PubMed ID: 18555612 [TBL] [Abstract][Full Text] [Related]
5. Novel detection system for biomolecules using nano-sized bacterial magnetic particles and magnetic force microscopy. Amemiya Y; Tanaka T; Yoza B; Matsunaga T J Biotechnol; 2005 Nov; 120(3):308-14. PubMed ID: 16111780 [TBL] [Abstract][Full Text] [Related]
6. Dynamic force measurements of avidin-biotin and streptavdin-biotin interactions using AFM. de Odrowaz Piramowicz M; Czuba P; Targosz M; Burda K; Szymoński M Acta Biochim Pol; 2006; 53(1):93-100. PubMed ID: 16410837 [TBL] [Abstract][Full Text] [Related]
7. Unbinding of the streptavidin-biotin complex by atomic force microscopy: a hybrid simulation study. Zhou J; Zhang L; Leng Y; Tsao HK; Sheng YJ; Jiang S J Chem Phys; 2006 Sep; 125(10):104905. PubMed ID: 16999548 [TBL] [Abstract][Full Text] [Related]
8. Direct visualization of ligand-protein interactions using atomic force microscopy. Neish CS; Martin IL; Henderson RM; Edwardson JM Br J Pharmacol; 2002 Apr; 135(8):1943-50. PubMed ID: 11959797 [TBL] [Abstract][Full Text] [Related]
9. Investigation of biotin-streptavidin binding interactions using microcantilever sensors. Shu W; Laue ED; Seshia AA Biosens Bioelectron; 2007 Apr; 22(9-10):2003-9. PubMed ID: 17045792 [TBL] [Abstract][Full Text] [Related]
10. Methods for reducing nonspecific interaction in antibody-antigen assay via atomic force microscopy. Wakayama J; Sekiguchi H; Akanuma S; Ohtani T; Sugiyama S Anal Biochem; 2008 Sep; 380(1):51-8. PubMed ID: 18559251 [TBL] [Abstract][Full Text] [Related]
11. In situ observation of biomolecules patterned on a PEG-modified Si surface by scanning probe lithography. Choi I; Kang SK; Lee J; Kim Y; Yi J Biomaterials; 2006 Sep; 27(26):4655-60. PubMed ID: 16701869 [TBL] [Abstract][Full Text] [Related]
12. Feedback based simultaneous correction of imaging artifacts due to geometrical and mechanical cross-talk and tip-sample stick in atomic force microscopy. Shegaonkar AC; Salapaka SM Rev Sci Instrum; 2007 Oct; 78(10):103706. PubMed ID: 17979427 [TBL] [Abstract][Full Text] [Related]
13. Direct force measurement of the interaction between liposome and the C2A domain of synaptotagmin I using atomic force microscopy. Park JH; Kwon EY; Jung HI; Kim DE Biotechnol Lett; 2006 Apr; 28(7):505-9. PubMed ID: 16614933 [TBL] [Abstract][Full Text] [Related]
14. An improved measurement of dsDNA elasticity using AFM. Nguyen TH; Lee SM; Na K; Yang S; Kim J; Yoon ES Nanotechnology; 2010 Feb; 21(7):75101. PubMed ID: 20090198 [TBL] [Abstract][Full Text] [Related]
15. Binding of streptavidin with biotinylated thermosensitive nanospheres based on poly(N,N-diethylacrylamide-co-2-hydroxyethyl methacrylate). Colonne M; Chen Y; Wu K; Freiberg S; Giasson S; Zhu XX Bioconjug Chem; 2007; 18(3):999-1003. PubMed ID: 17429939 [TBL] [Abstract][Full Text] [Related]
16. Detection and localization of single molecular recognition events using atomic force microscopy. Hinterdorfer P; Dufrêne YF Nat Methods; 2006 May; 3(5):347-55. PubMed ID: 16628204 [TBL] [Abstract][Full Text] [Related]
17. Selective immobilization of proteins on gold dot arrays and characterization using chemical force microscopy. Kim H; Park JH; Cho IH; Kim SK; Paek SH; Lee H J Colloid Interface Sci; 2009 Jun; 334(2):161-6. PubMed ID: 19406421 [TBL] [Abstract][Full Text] [Related]
18. A case study on biological activity in a surface-bound multicomponent system: the biotin-streptavidin-peroxidase system. Chelmowski R; Prekelt A; Grunwald C; Wöll C J Phys Chem A; 2007 Dec; 111(49):12295-303. PubMed ID: 17929906 [TBL] [Abstract][Full Text] [Related]
19. High-resolution noncontact atomic force microscopy. Pérez R; García R; Schwarz U Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843 [TBL] [Abstract][Full Text] [Related]
20. Stoichiometry-dependent formation of quantum dot-antibody bioconjugates: a complementary atomic force microscopy and agarose gel electrophoresis study. Nehilla BJ; Vu TQ; Desai TA J Phys Chem B; 2005 Nov; 109(44):20724-30. PubMed ID: 16853686 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]