These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 19345503)
1. Nanoscale film formation of ferritin and its application to biomemory device. Kim SU; Lee T; Lee JH; Yagati AK; Min J; Choi JW Ultramicroscopy; 2009 Jul; 109(8):974-9. PubMed ID: 19345503 [TBL] [Abstract][Full Text] [Related]
2. The fabrication of functional biosurface composed of iron storage protein, ferritin. Choi JW; Kim YJ; Kim SU; Min J; Oh BK Ultramicroscopy; 2008 Sep; 108(10):1356-9. PubMed ID: 18565664 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of DNA-protein conjugate layer on gold-substrate and its application to immunosensor. Choi JW; Chun BS; Oh BK; Lee W; Lee WH Colloids Surf B Biointerfaces; 2005 Feb; 40(3-4):173-7. PubMed ID: 15708509 [TBL] [Abstract][Full Text] [Related]
4. Multifunctional DNA-based biomemory device consisting of ssDNA/Cu heterolayers. Lee T; El-Said WA; Min J; Choi JW Biosens Bioelectron; 2011 Jan; 26(5):2304-10. PubMed ID: 21051218 [TBL] [Abstract][Full Text] [Related]
5. Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium. Oh BK; Kim YK; Park KW; Lee WH; Choi JW Biosens Bioelectron; 2004 Jun; 19(11):1497-504. PubMed ID: 15093222 [TBL] [Abstract][Full Text] [Related]
6. Nanoscale protein-based memory device composed of recombinant azurin. Kim SU; Yagati AK; Min J; Choi JW Biomaterials; 2010 Feb; 31(6):1293-8. PubMed ID: 19857891 [TBL] [Abstract][Full Text] [Related]
7. Multi-bit biomemory consisting of recombinant protein variants, azurin. Yagati AK; Kim SU; Min J; Choi JW Biosens Bioelectron; 2009 Jan; 24(5):1503-7. PubMed ID: 18809307 [TBL] [Abstract][Full Text] [Related]
8. Direct immobilization of cupredoxin azurin modified by site-directed mutagenesis on gold surface. Kim SU; Kim YJ; Choi SG; Yea CH; Singh RP; Min J; Oh BK; Choi JW Ultramicroscopy; 2008 Sep; 108(10):1390-5. PubMed ID: 18667275 [TBL] [Abstract][Full Text] [Related]
9. Multistate proteinous biomemory device based on redox controllable hapten cross-linker. Güzel R; Ersöz A; Dolak İ; Say R Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():336-342. PubMed ID: 28629026 [TBL] [Abstract][Full Text] [Related]
10. Multifunctional 4-bit biomemory chip consisting of recombinant azurin variants. Lee T; Min J; Kim SU; Choi JW Biomaterials; 2011 May; 32(15):3815-21. PubMed ID: 21354614 [TBL] [Abstract][Full Text] [Related]
11. Investigation of the redox property of a metalloprotein layer self-assembled on various chemical linkers. Chung YH; Lee T; Min J; Choi JW Colloids Surf B Biointerfaces; 2011 Oct; 87(1):36-41. PubMed ID: 21616650 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of self-assembled oligophenylethynylenethiol monolayer for electrochemical glucose biosensor. Jung SK; Namgung MO; Oh SY; Oh BK Ultramicroscopy; 2009 Jul; 109(8):911-5. PubMed ID: 19369004 [TBL] [Abstract][Full Text] [Related]
13. Study on orientation of immunoglobulin G on protein G layer. Bae YM; Oh BK; Lee W; Lee WH; Choi JW Biosens Bioelectron; 2005 Jul; 21(1):103-10. PubMed ID: 15967357 [TBL] [Abstract][Full Text] [Related]
14. Ferritin based bionanocages as novel biomemory device concept. Elmas ŞNK; Güzel R; Say MG; Ersoz A; Say R Biosens Bioelectron; 2018 Apr; 103():19-25. PubMed ID: 29277010 [TBL] [Abstract][Full Text] [Related]
15. Protein-based multi-bit biomemory device consisting of various metalloproteins on self-assembled 11-MUA layer. Lee T; Min J; Lee JH; Choi JW J Nanosci Nanotechnol; 2011 Jan; 11(1):523-7. PubMed ID: 21446489 [TBL] [Abstract][Full Text] [Related]
16. Nano-hemoglobin film based sextet state biomemory device by cross-linked photosensitive hapten monomer. Güzel R; Ersöz A; Ziyadanoğulları R; Say R Talanta; 2018 Jan; 176():85-91. PubMed ID: 28917810 [TBL] [Abstract][Full Text] [Related]
17. Immobilization of iron storage protein on a gold electrode based on self-assembled monolayers. Won K; Park MJ; Yoon HH; Kim JH Ultramicroscopy; 2008 Sep; 108(10):1342-7. PubMed ID: 18571860 [TBL] [Abstract][Full Text] [Related]
18. Verification of surfactant CHAPS effect using AFM for making biomemory device consisting of recombinant azurin monolayer. Lee T; Ahmed El-Said W; Min J; Oh BK; Choi JW Ultramicroscopy; 2010 May; 110(6):712-7. PubMed ID: 20206446 [TBL] [Abstract][Full Text] [Related]
19. Surface-enhanced Raman spectroscopy combined with atomic force microscopy for ultrasensitive detection of thrombin. Bizzarri AR; Cannistraro S Anal Biochem; 2009 Oct; 393(2):149-54. PubMed ID: 19563767 [TBL] [Abstract][Full Text] [Related]
20. Methods for reducing nonspecific interaction in antibody-antigen assay via atomic force microscopy. Wakayama J; Sekiguchi H; Akanuma S; Ohtani T; Sugiyama S Anal Biochem; 2008 Sep; 380(1):51-8. PubMed ID: 18559251 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]