BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 19345605)

  • 1. C-H bond activation in heme proteins: the role of thiolate ligation in cytochrome P450.
    Green MT
    Curr Opin Chem Biol; 2009 Feb; 13(1):84-8. PubMed ID: 19345605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering cytochrome c peroxidase into cytochrome P450: a proximal effect on heme-thiolate ligation.
    Sigman JA; Pond AE; Dawson JH; Lu Y
    Biochemistry; 1999 Aug; 38(34):11122-9. PubMed ID: 10460168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new look at the role of thiolate ligation in cytochrome P450.
    Yosca TH; Ledray AP; Ngo J; Green MT
    J Biol Inorg Chem; 2017 Apr; 22(2-3):209-220. PubMed ID: 28091754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid reactions of peroxynitrite with heme-thiolate proteins as the basis for protection of prostacyclin synthase from inactivation by nitration.
    Zou MH; Daiber A; Peterson JA; Shoun H; Ullrich V
    Arch Biochem Biophys; 2000 Apr; 376(1):149-55. PubMed ID: 10729200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for basic ferryls in cytochromes P450.
    Behan RK; Hoffart LM; Stone KL; Krebs C; Green MT
    J Am Chem Soc; 2006 Sep; 128(35):11471-4. PubMed ID: 16939270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron(IV)hydroxide pK(a) and the role of thiolate ligation in C-H bond activation by cytochrome P450.
    Yosca TH; Rittle J; Krest CM; Onderko EL; Silakov A; Calixto JC; Behan RK; Green MT
    Science; 2013 Nov; 342(6160):825-9. PubMed ID: 24233717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A thiolate-ligated nonheme oxoiron(IV) complex relevant to cytochrome P450.
    Bukowski MR; Koehntop KD; Stubna A; Bominaar EL; Halfen JA; Münck E; Nam W; Que L
    Science; 2005 Nov; 310(5750):1000-2. PubMed ID: 16254150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective CH bond functionalization with engineered heme proteins: new tools to generate complexity.
    Zhang RK; Huang X; Arnold FH
    Curr Opin Chem Biol; 2019 Apr; 49():67-75. PubMed ID: 30343008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remarkable axial thiolate ligand effect on the oxidation of hydrocarbons by active intermediate of iron porphyrin and cytochrome P450.
    Ohno T; Suzuki N; Dokoh T; Urano Y; Kikuchi K; Hirobe M; Higuchi T; Nagano T
    J Inorg Biochem; 2000 Nov; 82(1-4):123-5. PubMed ID: 11132618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutral thiol as a proximal ligand to ferrous heme iron: implications for heme proteins that lose cysteine thiolate ligation on reduction.
    Perera R; Sono M; Sigman JA; Pfister TD; Lu Y; Dawson JH
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3641-6. PubMed ID: 12655049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rate-limiting steps in cytochrome P450 catalysis.
    Guengerich FP
    Biol Chem; 2002 Oct; 383(10):1553-64. PubMed ID: 12452431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochrome P450. The Dioxygen-Activating Heme Thiolate.
    Castro Martínez FM; Páez López D; Sarmiento Pavía PD; Sosa Torres ME; Kroneck PMH
    Met Ions Life Sci; 2020 Mar; 20():. PubMed ID: 32851827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple active intermediates in oxidation reaction catalyzed by synthetic heme-thiolate complex relevant to cytochrome p450.
    Suzuki N; Higuchi T; Nagano T
    J Am Chem Soc; 2002 Aug; 124(32):9622-8. PubMed ID: 12167058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of redox potential and alteration in reactivity via the peroxide shunt pathway by mutation of cytochrome P450 around the proximal heme ligand.
    Matsumura H; Wakatabi M; Omi S; Ohtaki A; Nakamura N; Yohda M; Ohno H
    Biochemistry; 2008 Apr; 47(16):4834-42. PubMed ID: 18363338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heme-thiolate proteins.
    Omura T
    Biochem Biophys Res Commun; 2005 Dec; 338(1):404-9. PubMed ID: 16198303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Models and mechanisms of O-O bond activation by cytochrome P450. A critical assessment of the potential role of multiple active intermediates in oxidative catalysis.
    Hlavica P
    Eur J Biochem; 2004 Nov; 271(22):4335-60. PubMed ID: 15560776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient biocatalytic C-H bond oxidation: an engineered heme-thiolate peroxygenase from a thermostable cytochrome P450.
    Gee AR; Stone ISJ; Stockdale TP; Pukala TL; De Voss JJ; Bell SG
    Chem Commun (Camb); 2023 Nov; 59(90):13486-13489. PubMed ID: 37881007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of the heme active site to increase the peroxidase activity of thermophilic cytochrome P450: a rational approach.
    Behera RK; Goyal S; Mazumdar S
    J Inorg Biochem; 2010 Nov; 104(11):1185-94. PubMed ID: 20709408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new thioether-ligated iron porphyrin as a model of a protonated form of P450 active site.
    Dokoh T; Suzuki N; Higuchi T; Urano Y; Kikuchi K; Nagano T
    J Inorg Biochem; 2000 Nov; 82(1-4):127-32. PubMed ID: 11132619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significantly shorter Fe-S bond in cytochrome P450-I is consistent with greater reactivity relative to chloroperoxidase.
    Krest CM; Silakov A; Rittle J; Yosca TH; Onderko EL; Calixto JC; Green MT
    Nat Chem; 2015 Sep; 7(9):696-702. PubMed ID: 26291940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.