These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 19345718)
1. Inhibition of 7,8-diaminopelargonic acid aminotransferase from Mycobacterium tuberculosis by chiral and achiral anologs of its substrate: biological implications. Mann S; Colliandre L; Labesse G; Ploux O Biochimie; 2009 Jul; 91(7):826-34. PubMed ID: 19345718 [TBL] [Abstract][Full Text] [Related]
2. 7,8-Diaminoperlargonic acid aminotransferase from Mycobacterium tuberculosis, a potential therapeutic target. Characterization and inhibition studies. Mann S; Ploux O FEBS J; 2006 Oct; 273(20):4778-89. PubMed ID: 16984394 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of 7,8-diaminopelargonic acid aminotransferase by amiclenomycin and analogues. Mann S; Marquet A; Ploux O Biochem Soc Trans; 2005 Aug; 33(Pt 4):802-5. PubMed ID: 16042602 [TBL] [Abstract][Full Text] [Related]
4. A microplate fluorescence assay for DAPA aminotransferase by detection of the vicinal diamine 7,8-diaminopelargonic acid. Mann S; Eveleigh L; Lequin O; Ploux O Anal Biochem; 2013 Jan; 432(2):90-6. PubMed ID: 23068037 [TBL] [Abstract][Full Text] [Related]
5. Spectral and kinetic characterization of 7,8-diaminopelargonic acid synthase from Mycobacterium tuberculosis. Bhor VM; Dev S; Vasanthakumar GR; Surolia A IUBMB Life; 2006 Apr; 58(4):225-33. PubMed ID: 16754301 [TBL] [Abstract][Full Text] [Related]
6. Removing a bottleneck in the Bacillus subtilis biotin pathway: bioA utilizes lysine rather than S-adenosylmethionine as the amino donor in the KAPA-to-DAPA reaction. Van Arsdell SW; Perkins JB; Yocum RR; Luan L; Howitt CL; Chatterjee NP; Pero JG Biotechnol Bioeng; 2005 Jul; 91(1):75-83. PubMed ID: 15880481 [TBL] [Abstract][Full Text] [Related]
7. Conserved and nonconserved residues in the substrate binding site of 7,8-diaminopelargonic acid synthase from Escherichia coli are essential for catalysis. Sandmark J; Eliot AC; Famm K; Schneider G; Kirsch JF Biochemistry; 2004 Feb; 43(5):1213-22. PubMed ID: 14756557 [TBL] [Abstract][Full Text] [Related]
8. Inhibitors of biotin biosynthesis as potential herbicides: part 2. Ashkenazi T; Widberg A; Nudelman A; Wittenbach V; Flint D Pest Manag Sci; 2005 Oct; 61(10):1024-33. PubMed ID: 15937974 [TBL] [Abstract][Full Text] [Related]
9. Broad substrate stereospecificity of the Mycobacterium tuberculosis 7-keto-8-aminopelargonic acid synthase: Spectroscopic and kinetic studies. Bhor VM; Dev S; Vasanthakumar GR; Kumar P; Sinha S; Surolia A J Biol Chem; 2006 Sep; 281(35):25076-88. PubMed ID: 16769720 [TBL] [Abstract][Full Text] [Related]
10. A novel inhibitor of indole-3-glycerol phosphate synthase with activity against multidrug-resistant Mycobacterium tuberculosis. Shen H; Wang F; Zhang Y; Huang Q; Xu S; Hu H; Yue J; Wang H FEBS J; 2009 Jan; 276(1):144-54. PubMed ID: 19032598 [TBL] [Abstract][Full Text] [Related]
11. The dual-specific active site of 7,8-diaminopelargonic acid synthase and the effect of the R391A mutation. Eliot AC; Sandmark J; Schneider G; Kirsch JF Biochemistry; 2002 Oct; 41(42):12582-9. PubMed ID: 12379100 [TBL] [Abstract][Full Text] [Related]
12. Structural analysis of mycobacterial branched-chain aminotransferase: implications for inhibitor design. Castell A; Mille C; Unge T Acta Crystallogr D Biol Crystallogr; 2010 May; 66(Pt 5):549-57. PubMed ID: 20445230 [TBL] [Abstract][Full Text] [Related]
13. Studies of the mode of action of amiclenomycin. Hotta K; Kitahara T; Okami Y J Antibiot (Tokyo); 1975 Mar; 28(3):222-8. PubMed ID: 805119 [TBL] [Abstract][Full Text] [Related]
14. Aryl chain analogues of the biotin vitamers as potential herbicides. Part 3. Ashkenazi T; Pinkert D; Nudelman A; Widberg A; Wexler B; Wittenbach V; Flint D; Nudelman A Pest Manag Sci; 2007 Oct; 63(10):974-1001. PubMed ID: 17665367 [TBL] [Abstract][Full Text] [Related]
15. Design and synthesis of potential mechanism-based inhibitors of the aminotransferase BioA involved in biotin biosynthesis. Shi C; Aldrich CC J Org Chem; 2012 Jul; 77(14):6051-8. PubMed ID: 22724679 [TBL] [Abstract][Full Text] [Related]
16. Design, synthesis, and evaluation of 9-D-ribitylamino-1,3,7,9-tetrahydro-2,6,8-purinetriones bearing alkyl phosphate and alpha,alpha-difluorophosphonate substituents as inhibitors of tiboflavin synthase and lumazine synthase. Cushman M; Sambaiah T; Jin G; Illarionov B; Fischer M; Bacher A J Org Chem; 2004 Feb; 69(3):601-12. PubMed ID: 14750781 [TBL] [Abstract][Full Text] [Related]
17. Structure-aided design of inhibitors of Mycobacterium tuberculosis thymidylate kinase. Van Calenbergh S Verh K Acad Geneeskd Belg; 2006; 68(4):223-48. PubMed ID: 17214439 [TBL] [Abstract][Full Text] [Related]
18. Structure-based design of a potent and selective small peptide inhibitor of Mycobacterium tuberculosis 6-hydroxymethyl-7, 8-dihydropteroate synthase: a computer modelling approach. Rao GS; Kumar M Chem Biol Drug Des; 2008 Jun; 71(6):540-5. PubMed ID: 18482337 [TBL] [Abstract][Full Text] [Related]
19. Structure of biosynthetic N-acetylornithine aminotransferase from Salmonella typhimurium: studies on substrate specificity and inhibitor binding. Rajaram V; Ratna Prasuna P; Savithri HS; Murthy MR Proteins; 2008 Feb; 70(2):429-41. PubMed ID: 17680699 [TBL] [Abstract][Full Text] [Related]