BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 19345985)

  • 1. Influence of threshold value in the use of statistical methods for groundwater vulnerability assessment.
    Masetti M; Sterlacchini S; Ballabio C; Sorichetta A; Poli S
    Sci Total Environ; 2009 Jun; 407(12):3836-46. PubMed ID: 19345985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliability of groundwater vulnerability maps obtained through statistical methods.
    Sorichetta A; Masetti M; Ballabio C; Sterlacchini S; Beretta GP
    J Environ Manage; 2011 Apr; 92(4):1215-24. PubMed ID: 21208723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial variability of shallow groundwater level, electrical conductivity and nitrate concentration, and risk assessment of nitrate contamination in North China Plain.
    Hu K; Huang Y; Li H; Li B; Chen D; White RE
    Environ Int; 2005 Aug; 31(6):896-903. PubMed ID: 16005970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vulnerability and risk evaluation of agricultural nitrogen pollution for Hungary's main aquifer using DRASTIC and GLEAMS models.
    Leone A; Ripa MN; Uricchio V; Deák J; Vargay Z
    J Environ Manage; 2009 Jul; 90(10):2969-78. PubMed ID: 18054423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vulnerability of groundwater to pollution from agricultural diffuse sources: a case study.
    Muhammetoğlu H; Muhammetoğlu A; Soyupak S
    Water Sci Technol; 2002; 45(9):1-7. PubMed ID: 12079090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial and statistical assessment of factors influencing nitrate contamination in groundwater.
    Masetti M; Poli S; Sterlacchini S; Beretta GP; Facchi A
    J Environ Manage; 2008 Jan; 86(1):272-81. PubMed ID: 17296259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system.
    Babiker IS; Mohamed MA; Terao H; Kato K; Ohta K
    Environ Int; 2004 Feb; 29(8):1009-17. PubMed ID: 14680883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrate in aquifers beneath agricultural systems.
    Burkart MR; Stoner JD
    Water Sci Technol; 2002; 45(9):19-28. PubMed ID: 12079102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of artificial neural networks to assess pesticide contamination in shallow groundwater.
    Sahoo GB; Ray C; Mehnert E; Keefer DA
    Sci Total Environ; 2006 Aug; 367(1):234-51. PubMed ID: 16460784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors affecting the spatial pattern of nitrate contamination in shallow groundwater.
    Kaown D; Hyun Y; Bae GO; Lee KK
    J Environ Qual; 2007; 36(5):1479-87. PubMed ID: 17766827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of vulnerability factors that control nitrate occurrence in natural springs (Osona Region, NE Spain).
    Menció A; Boy M; Mas-Pla J
    Sci Total Environ; 2011 Jul; 409(16):3049-58. PubMed ID: 21600631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of intrinsic vulnerability to contamination for Gaza coastal aquifer, Palestine.
    Almasri MN
    J Environ Manage; 2008 Sep; 88(4):577-93. PubMed ID: 17391837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of variables controlling nitrate dynamics in groundwater: is it a threat to surface aquatic ecosystems?
    Rasiah V; Armour JD; Cogle AL
    Mar Pollut Bull; 2005; 51(1-4):60-9. PubMed ID: 15757708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Agriculture and groundwater nitrate contamination in the Seine basin. The STICS-MODCOU modelling chain.
    Ledoux E; Gomez E; Monget JM; Viavattene C; Viennot P; Ducharne A; Benoit M; Mignolet C; Schott C; Mary B
    Sci Total Environ; 2007 Apr; 375(1-3):33-47. PubMed ID: 17275068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan.
    Babiker IS; Mohamed MA; Hiyama T; Kato K
    Sci Total Environ; 2005 Jun; 345(1-3):127-40. PubMed ID: 15919534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrate and fluoride contamination in groundwater of an intensively managed agroecosystem: a functional relationship.
    Kundu MC; Mandal B; Hazra GC
    Sci Total Environ; 2009 Apr; 407(8):2771-82. PubMed ID: 19195681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of geographic information systems for assessing groundwater pollution potential by pesticides in Central Thailand.
    Thapinta A; Hudak PF
    Environ Int; 2003 Apr; 29(1):87-93. PubMed ID: 12605941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Groundwater contamination assessment for sustainable water supply in Kathmandu Valley, Nepal.
    Khatlwada NR; Takizawa S; Tran TV; Inoue M
    Water Sci Technol; 2002; 46(9):147-54. PubMed ID: 12448463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park.
    Muñoz-Carpena R; Ritter A; Li YC
    J Contam Hydrol; 2005 Nov; 80(1-2):49-70. PubMed ID: 16102872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors affecting nitrate distribution in shallow groundwater under a beef farm in south eastern Ireland.
    Fenton O; Richards KG; Kirwan L; Khalil MI; Healy MG
    J Environ Manage; 2009 Jul; 90(10):3135-46. PubMed ID: 19556054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.