These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 19346167)

  • 1. Electrochemical and solid-phase synthetic modification of glassy carbon electrodes with dihydroxybenzene compounds and the electrocatalytic oxidation of NADH.
    Ghanem MA; Chrétien JM; Kilburn JD; Bartlett PN
    Bioelectrochemistry; 2009 Sep; 76(1-2):115-25. PubMed ID: 19346167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent tethering of organic functionality to the surface of glassy carbon electrodes by using electrochemical and solid-phase synthesis methodologies.
    Chrétien JM; Ghanem MA; Bartlett PN; Kilburn JD
    Chemistry; 2008; 14(8):2548-56. PubMed ID: 18205157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Covalent modification of glassy carbon surfaces by using electrochemical and solid-phase synthetic methodologies: application to bi- and trifunctionalisation with different redox centres.
    Chrétien JM; Ghanem MA; Bartlett PN; Kilburn JD
    Chemistry; 2009 Nov; 15(44):11928-36. PubMed ID: 19784967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanofiber vs. carbon microparticles as modifiers of glassy carbon and gold electrodes applied in electrochemical sensing of NADH.
    Pérez B; Del Valle M; Alegret S; Merkoçi A
    Talanta; 2007 Dec; 74(3):398-404. PubMed ID: 18371655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of formal potential of NADH/NAD+ redox couple and catalytic oxidation of NADH using poly(phenosafranin)-modified carbon electrodes.
    Saleh FS; Rahman MR; Okajima T; Mao L; Ohsaka T
    Bioelectrochemistry; 2011 Feb; 80(2):121-7. PubMed ID: 20667793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput synthesis and electrochemical screening of a library of modified electrodes for NADH oxidation.
    Pinczewska A; Sosna M; Bloodworth S; Kilburn JD; Bartlett PN
    J Am Chem Soc; 2012 Oct; 134(43):18022-33. PubMed ID: 23046387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous determination of dopamine, ascorbic acid and uric acid at poly (Evans Blue) modified glassy carbon electrode.
    Lin L; Chen J; Yao H; Chen Y; Zheng Y; Lin X
    Bioelectrochemistry; 2008 Jun; 73(1):11-7. PubMed ID: 18417426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amperometric sensing of ascorbic acid using a disposable screen-printed electrode modified with electrografted o-aminophenol film.
    Nassef HM; Civit L; Fragoso A; O'Sullivan CK
    Analyst; 2008 Dec; 133(12):1736-41. PubMed ID: 19082077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cobalt hydroxide nanoparticles modified glassy carbon electrode as a biosensor for electrooxidation and determination of some amino acids.
    Hasanzadeh M; Karim-Nezhad G; Shadjou N; Hajjizadeh M; Khalilzadeh B; Saghatforoush L; Abnosi MH; Babaei A; Ershad S
    Anal Biochem; 2009 Jun; 389(2):130-7. PubMed ID: 19306837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide.
    Zhou M; Zhai Y; Dong S
    Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrocatalytic tetracycline oxidation at a mixed-valent ruthenium oxide--ruthenium cyanide-modified glassy carbon electrode and determination of tetracyclines by liquid chromatography with electrochemical detection.
    Loetanantawong B; Suracheep C; Somasundrum M; Surareungchai W
    Anal Chem; 2004 Apr; 76(8):2266-72. PubMed ID: 15080737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical sensing platform based on the highly ordered mesoporous carbon-fullerene system.
    Zhou M; Guo J; Guo LP; Bai J
    Anal Chem; 2008 Jun; 80(12):4642-50. PubMed ID: 18476717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Easy modification of glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid.
    Thiagarajan S; Tsai TH; Chen SM
    Biosens Bioelectron; 2009 Apr; 24(8):2712-5. PubMed ID: 19162467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergetic effect for NADH oxidation of ferrocene and zeolite in modified carbon paste electrodes. New approach for dehydrogenase based biosensors.
    Serban S; El Murr N
    Biosens Bioelectron; 2004 Sep; 20(2):161-6. PubMed ID: 15308217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 6-Vinyl coenzyme Q0: Electropolymerization and electrocatalysis of NADH oxidation exploiting poly-p-quinone-modified electrode surfaces.
    Li Y; Shi L; Ma W; Li DW; Kraatz HB; Long YT
    Bioelectrochemistry; 2011 Feb; 80(2):128-31. PubMed ID: 20678972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison between the use of a redox mediator in solution and of surface modified electrodes in the electrocatalytic oxidation of nicotinamide adenine dinucleotide.
    Antiochia R; Lavagnini I; Pastore P; Magno F
    Bioelectrochemistry; 2004 Sep; 64(2):157-63. PubMed ID: 15296789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical behaviour of 2,8-dihydroxyadenine at a glassy carbon electrode.
    Diculescu VC; Piedade JA; Oliveira-Brett AM
    Bioelectrochemistry; 2007 Jan; 70(1):141-6. PubMed ID: 16713382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(amidosulfonic acid) modified glassy carbon electrode for determination of isoniazid in pharmaceuticals.
    Yang G; Wang C; Zhang R; Wang C; Qu Q; Hu X
    Bioelectrochemistry; 2008 Jun; 73(1):37-42. PubMed ID: 18499535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic electrogenerated chemiluminescence and nitrate reduction at CdS nanotubes modified glassy carbon electrode.
    Fang YM; Sun JJ; Wu AH; Su XL; Chen GN
    Langmuir; 2009 Jan; 25(1):555-60. PubMed ID: 19063632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective electrochemical method for investigation of hemoglobin unfolding based on the redox property of heme groups at glassy carbon electrodes.
    Li X; Zheng W; Zhang L; Yu P; Lin Y; Su L; Mao L
    Anal Chem; 2009 Oct; 81(20):8557-63. PubMed ID: 19754140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.