These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 19346241)

  • 21. The F-box protein RhSAF destabilizes the gibberellic acid receptor RhGID1 to mediate ethylene-induced petal senescence in rose.
    Lu J; Zhang G; Ma C; Li Y; Jiang C; Wang Y; Zhang B; Wang R; Qiu Y; Ma Y; Jia Y; Jiang CZ; Sun X; Ma N; Jiang Y; Gao J
    Plant Cell; 2024 May; 36(5):1736-1754. PubMed ID: 38315889
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relationship between Rh-RTH1 and ethylene receptor gene expression in response to ethylene in cut rose.
    Yu Y; Wang J; Wang H; Zhang Z; Liu J
    Plant Cell Rep; 2010 Aug; 29(8):895-904. PubMed ID: 20524120
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An organ-specific role for ethylene in rose petal expansion during dehydration and rehydration.
    Liu D; Liu X; Meng Y; Sun C; Tang H; Jiang Y; Khan MA; Xue J; Ma N; Gao J
    J Exp Bot; 2013 May; 64(8):2333-44. PubMed ID: 23599274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rose petals.
    Dai F; Zhang C; Jiang X; Kang M; Yin X; Lü P; Zhang X; Zheng Y; Gao J
    Plant Physiol; 2012 Dec; 160(4):2064-82. PubMed ID: 23093360
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative RNA-seq analysis of transcriptome dynamics during petal development in Rosa chinensis.
    Han Y; Wan H; Cheng T; Wang J; Yang W; Pan H; Zhang Q
    Sci Rep; 2017 Feb; 7():43382. PubMed ID: 28225056
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ethylene-regulated expression of a carnation cysteine proteinase during flower petal senescence.
    Jones ML; Larsen PB; Woodson WR
    Plant Mol Biol; 1995 Jun; 28(3):505-12. PubMed ID: 7632919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The RhLOL1-RhILR3 module mediates cytokinin-induced petal abscission in rose.
    Jiang C; Liang Y; Deng S; Liu Y; Zhao H; Li S; Jiang CZ; Gao J; Ma C
    New Phytol; 2023 Jan; 237(2):483-496. PubMed ID: 36263705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RhNAC3, a stress-associated NAC transcription factor, has a role in dehydration tolerance through regulating osmotic stress-related genes in rose petals.
    Jiang X; Zhang C; Lü P; Jiang G; Liu X; Dai F; Gao J
    Plant Biotechnol J; 2014 Jan; 12(1):38-48. PubMed ID: 24011328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RhERF113 Functions in Ethylene-Induced Petal Senescence by Modulating Cytokinin Content in Rose.
    Khaskheli AJ; Ahmed W; Ma C; Zhang S; Liu Y; Li Y; Zhou X; Gao J
    Plant Cell Physiol; 2018 Dec; 59(12):2442-2451. PubMed ID: 30101287
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The AP2/ERF transcription factor SlERF52 functions in flower pedicel abscission in tomato.
    Nakano T; Fujisawa M; Shima Y; Ito Y
    J Exp Bot; 2014 Jul; 65(12):3111-9. PubMed ID: 24744429
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein Kinase RhCIPK6 Promotes Petal Senescence in Response to Ethylene in Rose (
    Wu Y; Zuo L; Ma Y; Jiang Y; Gao J; Tao J; Chen C
    Genes (Basel); 2022 Oct; 13(11):. PubMed ID: 36360225
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptional regulation of ethylene receptor and CTR genes involved in ethylene-induced flower opening in cut rose (Rosa hybrida) cv. Samantha.
    Ma N; Tan H; Liu X; Xue J; Li Y; Gao J
    J Exp Bot; 2006; 57(11):2763-73. PubMed ID: 16844735
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ethylene-dependent and -independent pathways controlling floral abscission are revealed to converge using promoter::reporter gene constructs in the ida abscission mutant.
    Butenko MA; Stenvik GE; Alm V; Saether B; Patterson SE; Aalen RB
    J Exp Bot; 2006; 57(14):3627-37. PubMed ID: 16990374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flower senescence: some molecular aspects.
    Shahri W; Tahir I
    Planta; 2014 Feb; 239(2):277-97. PubMed ID: 24178586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pollination induces autophagy in petunia petals via ethylene.
    Shibuya K; Niki T; Ichimura K
    J Exp Bot; 2013 Feb; 64(4):1111-20. PubMed ID: 23349142
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Is a cysteine proteinase inhibitor involved in the regulation of petal wilting in senescing carnation (Dianthus caryophyllus L.) flowers?
    Sugawara H; Shibuya K; Yoshioka T; Hashiba T; Satoh S
    J Exp Bot; 2002 Mar; 53(368):407-13. PubMed ID: 11847238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fading beauty: The protein degradation mechanism behind rose petal senescence.
    Liu P
    Plant Cell; 2024 May; 36(5):1578-1579. PubMed ID: 38442313
    [No Abstract]   [Full Text] [Related]  

  • 38. Flower proteome: changes in protein spectrum during the advanced stages of rose petal development.
    Dafny-Yelin M; Guterman I; Menda N; Ovadis M; Shalit M; Pichersky E; Zamir D; Lewinsohn E; Adam Z; Weiss D; Vainstein A
    Planta; 2005 Sep; 222(1):37-46. PubMed ID: 15883834
    [TBL] [Abstract][Full Text] [Related]  

  • 39. HC-Pro silencing suppressor significantly alters the gene expression profile in tobacco leaves and flowers.
    Soitamo AJ; Jada B; Lehto K
    BMC Plant Biol; 2011 Apr; 11():68. PubMed ID: 21507209
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The CALCINEURIN B-LIKE 4/CBL-INTERACTING PROTEIN 3 module degrades repressor JAZ5 during rose petal senescence.
    Chen C; Ma Y; Zuo L; Xiao Y; Jiang Y; Gao J
    Plant Physiol; 2023 Sep; 193(2):1605-1620. PubMed ID: 37403193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.