BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 19346293)

  • 1. Effect of metal ion on the structural stability of tumour suppressor protein p53 DNA-binding domain.
    Xue Y; Wang S; Feng X
    J Biochem; 2009 Aug; 146(2):193-200. PubMed ID: 19346293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of magnesium ion on the binding of p53 DNA-binding domain to DNA-response elements.
    Xue Y; Wang S; Feng X
    J Biochem; 2009 Jul; 146(1):77-85. PubMed ID: 19297420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the coordination geometry for Mg2+ in the p53 DNA-binding domain: insights from computational studies.
    Wang T; Shao X; Cai W; Xue Y; Wang S; Feng X
    Phys Chem Chem Phys; 2011 Jan; 13(3):1140-51. PubMed ID: 21076775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-dependent folding and stability of nuclear hormone receptor DNA-binding domains.
    Low LY; Hernández H; Robinson CV; O'Brien R; Grossmann JG; Ladbury JE; Luisi B
    J Mol Biol; 2002 May; 319(1):87-106. PubMed ID: 12051939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Zn2+ on DNA recognition and stability of the p53 DNA-binding domain.
    Duan J; Nilsson L
    Biochemistry; 2006 Jun; 45(24):7483-92. PubMed ID: 16768444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal ions modulate the folding and stability of the tumor suppressor protein S100A2.
    Botelho HM; Koch M; Fritz G; Gomes CM
    FEBS J; 2009 Mar; 276(6):1776-86. PubMed ID: 19267779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cognate DNA stabilizes the tumor suppressor p53 and prevents misfolding and aggregation.
    Ishimaru D; Ano Bom AP; Lima LM; Quesado PA; Oyama MF; de Moura Gallo CV; Cordeiro Y; Silva JL
    Biochemistry; 2009 Jul; 48(26):6126-35. PubMed ID: 19505151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure, function, and aggregation of the zinc-free form of the p53 DNA binding domain.
    Butler JS; Loh SN
    Biochemistry; 2003 Mar; 42(8):2396-403. PubMed ID: 12600206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural domain design: enhanced thermal stability of a zinc-lacking ferredoxin isoform shows that a hydrophobic core efficiently replaces the structural metal site.
    Rocha R; Leal SS; Teixeira VH; Regalla M; Huber H; Baptista AM; Soares CM; Gomes CM
    Biochemistry; 2006 Aug; 45(34):10376-84. PubMed ID: 16922514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Zn(II) binding and apoprotein structural stability on the conformation change of designed antennafinger proteins.
    Hori Y; Sugiura Y
    Biochemistry; 2004 Mar; 43(11):3068-74. PubMed ID: 15023058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations.
    Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z
    J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition of DNA by p53 core domain and location of intermolecular contacts of cooperative binding.
    Rippin TM; Freund SM; Veprintsev DB; Fersht AR
    J Mol Biol; 2002 May; 319(2):351-8. PubMed ID: 12051912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three conformational states of the p300 CH1 domain define its functional properties.
    Dial R; Sun ZY; Freedman SJ
    Biochemistry; 2003 Aug; 42(33):9937-45. PubMed ID: 12924942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A thermodynamic study on the interaction between magnesium ion and human growth hormone.
    Saboury AA; Atri MS; Sanati MH; Moosavi-Movahedi AA; Hakimelahi GH; Sadeghi M
    Biopolymers; 2006 Feb; 81(2):120-6. PubMed ID: 16208769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selectivity of metal binding and metal-induced stability of Escherichia coli NikR.
    Wang SC; Dias AV; Bloom SL; Zamble DB
    Biochemistry; 2004 Aug; 43(31):10018-28. PubMed ID: 15287729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zn(2+)-dependent misfolding of the p53 DNA binding domain.
    Butler JS; Loh SN
    Biochemistry; 2007 Mar; 46(10):2630-9. PubMed ID: 17297920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro folding and characterization of the p53 DNA binding domain.
    Klein C; Hesse F; Dehner A; Engh RA; Schwaiger M; Hansen S
    Biol Chem; 2004 Jan; 385(1):95-102. PubMed ID: 14977051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreased sensitivity to changes in the concentration of metal ions as the basis for the hyperactivity of DtxR(E175K).
    D'Aquino JA; Denninger AR; Moulin AG; D'Aquino KE; Ringe D
    J Mol Biol; 2009 Jul; 390(1):112-23. PubMed ID: 19433095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the human p53 core domain in the absence of DNA.
    Wang Y; Rosengarth A; Luecke H
    Acta Crystallogr D Biol Crystallogr; 2007 Mar; 63(Pt 3):276-81. PubMed ID: 17327663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the p53-rescue drug CP-31398 in vitro and in living cells.
    Rippin TM; Bykov VJ; Freund SM; Selivanova G; Wiman KG; Fersht AR
    Oncogene; 2002 Mar; 21(14):2119-29. PubMed ID: 11948395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.