These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 19346355)
1. Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum. Kawaguchi H; Sasaki M; Vertès AA; Inui M; Yukawa H Appl Environ Microbiol; 2009 Jun; 75(11):3419-29. PubMed ID: 19346355 [TBL] [Abstract][Full Text] [Related]
2. The LacI-Type transcriptional regulator AraR acts as an L-arabinose-responsive repressor of L-arabinose utilization genes in Corynebacterium glutamicum ATCC 31831. Kuge T; Teramoto H; Yukawa H; Inui M J Bacteriol; 2014 Jun; 196(12):2242-54. PubMed ID: 24706742 [TBL] [Abstract][Full Text] [Related]
3. AraR, an l-Arabinose-Responsive Transcriptional Regulator in Corynebacterium glutamicum ATCC 31831, Exerts Different Degrees of Repression Depending on the Location of Its Binding Sites within the Three Target Promoter Regions. Kuge T; Teramoto H; Inui M J Bacteriol; 2015 Dec; 197(24):3788-96. PubMed ID: 26416832 [TBL] [Abstract][Full Text] [Related]
4. Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum. Kawaguchi H; Sasaki M; Vertès AA; Inui M; Yukawa H Appl Microbiol Biotechnol; 2008 Jan; 77(5):1053-62. PubMed ID: 17965859 [TBL] [Abstract][Full Text] [Related]
5. Distinct molecular mechanisms involved in carbon catabolite repression of the arabinose regulon in Bacillus subtilis. Inácio JM; Costa C; de Sá-Nogueira I Microbiology (Reading); 2003 Sep; 149(Pt 9):2345-2355. PubMed ID: 12949161 [TBL] [Abstract][Full Text] [Related]
6. Metabolome analysis-based design and engineering of a metabolic pathway in Corynebacterium glutamicum to match rates of simultaneous utilization of D-glucose and L-arabinose. Kawaguchi H; Yoshihara K; Hara KY; Hasunuma T; Ogino C; Kondo A Microb Cell Fact; 2018 May; 17(1):76. PubMed ID: 29773073 [TBL] [Abstract][Full Text] [Related]
7. The Bacillus subtilis L-arabinose (ara) operon: nucleotide sequence, genetic organization and expression. Sa-Nogueira I; Nogueira TV; Soares S; de Lencastre H Microbiology (Reading); 1997 Mar; 143 ( Pt 3)():957-969. PubMed ID: 9084180 [TBL] [Abstract][Full Text] [Related]
8. Negative regulation of L-arabinose metabolism in Bacillus subtilis: characterization of the araR (araC) gene. Sá-Nogueira I; Mota LJ J Bacteriol; 1997 Mar; 179(5):1598-608. PubMed ID: 9045819 [TBL] [Abstract][Full Text] [Related]
9. Cloning, functional analysis, and transcriptional regulation of the Bacillus subtilis araE gene involved in L-arabinose utilization. Sá-Nogueira I; Ramos SS J Bacteriol; 1997 Dec; 179(24):7705-11. PubMed ID: 9401028 [TBL] [Abstract][Full Text] [Related]
10. Development and application of an arabinose-inducible expression system by facilitating inducer uptake in Corynebacterium glutamicum. Zhang Y; Shang X; Lai S; Zhang G; Liang Y; Wen T Appl Environ Microbiol; 2012 Aug; 78(16):5831-8. PubMed ID: 22685153 [TBL] [Abstract][Full Text] [Related]
11. Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Sasaki M; Jojima T; Kawaguchi H; Inui M; Yukawa H Appl Microbiol Biotechnol; 2009 Nov; 85(1):105-15. PubMed ID: 19529932 [TBL] [Abstract][Full Text] [Related]
12. The L-Arabinan utilization system of Geobacillus stearothermophilus. Shulami S; Raz-Pasteur A; Tabachnikov O; Gilead-Gropper S; Shner I; Shoham Y J Bacteriol; 2011 Jun; 193(11):2838-50. PubMed ID: 21460081 [TBL] [Abstract][Full Text] [Related]
13. Control of the arabinose regulon in Bacillus subtilis by AraR in vivo: crucial roles of operators, cooperativity, and DNA looping. Mota LJ; Sarmento LM; de Sá-Nogueira I J Bacteriol; 2001 Jul; 183(14):4190-201. PubMed ID: 11418559 [TBL] [Abstract][Full Text] [Related]
14. The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences. Brinkrolf K; Plöger S; Solle S; Brune I; Nentwich SS; Hüser AT; Kalinowski J; Pühler A; Tauch A Microbiology (Reading); 2008 Apr; 154(Pt 4):1068-1081. PubMed ID: 18375800 [TBL] [Abstract][Full Text] [Related]
15. Mode of action of AraR, the key regulator of L-arabinose metabolism in Bacillus subtilis. Mota LJ; Tavares P; Sá-Nogueira I Mol Microbiol; 1999 Aug; 33(3):476-89. PubMed ID: 10417639 [TBL] [Abstract][Full Text] [Related]
16. L-Arabinose-sensitive, L-ribulose 5-phosphate 4-epimerase-deficient mutants of Escherichia coli. ENGLESBERG E; ANDERSON RL; WEINBERG R; LEE N; HOFFEE P; HUTTENHAUER G; BOYER H J Bacteriol; 1962 Jul; 84(1):137-46. PubMed ID: 13890280 [TBL] [Abstract][Full Text] [Related]
17. Molecular cloning of the Escherichia coli B L-fucose-D-arabinose gene cluster. Elsinghorst EA; Mortlock RP J Bacteriol; 1994 Dec; 176(23):7223-32. PubMed ID: 7961494 [TBL] [Abstract][Full Text] [Related]
18. Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum. Schneider J; Niermann K; Wendisch VF J Biotechnol; 2011 Jul; 154(2-3):191-8. PubMed ID: 20638422 [TBL] [Abstract][Full Text] [Related]
19. The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. Gaigalat L; Schlüter JP; Hartmann M; Mormann S; Tauch A; Pühler A; Kalinowski J BMC Mol Biol; 2007 Nov; 8():104. PubMed ID: 18005413 [TBL] [Abstract][Full Text] [Related]
20. Phenylacetic acid catabolism and its transcriptional regulation in Corynebacterium glutamicum. Chen X; Kohl TA; Rückert C; Rodionov DA; Li LH; Ding JY; Kalinowski J; Liu SJ Appl Environ Microbiol; 2012 Aug; 78(16):5796-804. PubMed ID: 22685150 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]