These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 19346355)
21. Identification of mannose uptake and catabolism genes in Corynebacterium glutamicum and genetic engineering for simultaneous utilization of mannose and glucose. Sasaki M; Teramoto H; Inui M; Yukawa H Appl Microbiol Biotechnol; 2011 Mar; 89(6):1905-16. PubMed ID: 21125267 [TBL] [Abstract][Full Text] [Related]
22. Transcription of Sialic Acid Catabolism Genes in Corynebacterium glutamicum Is Subject to Catabolite Repression and Control by the Transcriptional Repressor NanR. Uhde A; Brühl N; Goldbeck O; Matano C; Gurow O; Rückert C; Marin K; Wendisch VF; Krämer R; Seibold GM J Bacteriol; 2016 Aug; 198(16):2204-18. PubMed ID: 27274030 [TBL] [Abstract][Full Text] [Related]
23. The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum. Brune I; Werner H; Hüser AT; Kalinowski J; Pühler A; Tauch A BMC Genomics; 2006 Feb; 7():21. PubMed ID: 16469103 [TBL] [Abstract][Full Text] [Related]
24. Regulation of expression of genes involved in quinate and shikimate utilization in Corynebacterium glutamicum. Teramoto H; Inui M; Yukawa H Appl Environ Microbiol; 2009 Jun; 75(11):3461-8. PubMed ID: 19376919 [TBL] [Abstract][Full Text] [Related]
25. Aerobic production of succinate from arabinose by metabolically engineered Corynebacterium glutamicum. Chen T; Zhu N; Xia H Bioresour Technol; 2014 Jan; 151():411-4. PubMed ID: 24169202 [TBL] [Abstract][Full Text] [Related]
26. Positively regulated expression of the Escherichia coli araBAD promoter in Corynebacterium glutamicum. Ben-Samoun K; Leblon G; Reyes O FEMS Microbiol Lett; 1999 May; 174(1):125-30. PubMed ID: 10234830 [TBL] [Abstract][Full Text] [Related]
27. Identification of a gene encoding a transporter essential for utilization of C4 dicarboxylates in Corynebacterium glutamicum. Teramoto H; Shirai T; Inui M; Yukawa H Appl Environ Microbiol; 2008 Sep; 74(17):5290-6. PubMed ID: 18586971 [TBL] [Abstract][Full Text] [Related]
28. Ribulokinase and transcriptional regulation of arabinose metabolism in Clostridium acetobutylicum. Zhang L; Leyn SA; Gu Y; Jiang W; Rodionov DA; Yang C J Bacteriol; 2012 Mar; 194(5):1055-64. PubMed ID: 22194461 [TBL] [Abstract][Full Text] [Related]
29. Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum. Busche T; Silar R; Pičmanová M; Pátek M; Kalinowski J BMC Genomics; 2012 Sep; 13():445. PubMed ID: 22943411 [TBL] [Abstract][Full Text] [Related]
31. Metabolite gene regulation: imidazole and imidazole derivatives which circumvent cyclic adenosine 3',5'-monophosphate in induction of the Escherichia coli L-arabinose operon. Kline EL; Bankaitis VA; Brown CS; Montefiori DC J Bacteriol; 1980 Feb; 141(2):770-8. PubMed ID: 6245056 [TBL] [Abstract][Full Text] [Related]
32. The dual transcriptional regulator CysR in Corynebacterium glutamicum ATCC 13032 controls a subset of genes of the McbR regulon in response to the availability of sulphide acceptor molecules. Rückert C; Milse J; Albersmeier A; Koch DJ; Pühler A; Kalinowski J BMC Genomics; 2008 Oct; 9():483. PubMed ID: 18854009 [TBL] [Abstract][Full Text] [Related]
33. Dominance relationships among mutant alleles of regulatory gene araC in the Escherichia coli B/R L-arabinose operon. Sheppard DE J Bacteriol; 1986 Nov; 168(2):999-1001. PubMed ID: 3023295 [TBL] [Abstract][Full Text] [Related]
34. Metabolic engineering of Corynebacterium glutamicum to produce GDP-L-fucose from glucose and mannose. Chin YW; Park JB; Park YC; Kim KH; Seo JH Bioprocess Biosyst Eng; 2013 Jun; 36(6):749-56. PubMed ID: 23404100 [TBL] [Abstract][Full Text] [Related]
35. The amrG1 gene is involved in the activation of acetate in Corynebacterium glutamicum. Ruan H; Gerstmeir R; Schnicke S; Eikmanns BJ Sci China C Life Sci; 2005 Apr; 48(2):97-105. PubMed ID: 15986882 [TBL] [Abstract][Full Text] [Related]
36. Probing key DNA contacts in AraR-mediated transcriptional repression of the Bacillus subtilis arabinose regulon. Franco IS; Mota LJ; Soares CM; de Sá-Nogueira I Nucleic Acids Res; 2007; 35(14):4755-66. PubMed ID: 17617643 [TBL] [Abstract][Full Text] [Related]
37. Mutations affecting catabolite repression of the L-arabinose regulon in Escherichia coli B/r. Heffernan L; Bass R; Englesberg E J Bacteriol; 1976 Jun; 126(3):1119-31. PubMed ID: 181362 [TBL] [Abstract][Full Text] [Related]
38. Characterization of the LacI-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032. Nentwich SS; Brinkrolf K; Gaigalat L; Hüser AT; Rey DA; Mohrbach T; Marin K; Pühler A; Tauch A; Kalinowski J Microbiology (Reading); 2009 Jan; 155(Pt 1):150-164. PubMed ID: 19118356 [TBL] [Abstract][Full Text] [Related]
39. The surface (S)-layer gene cspB of Corynebacterium glutamicum is transcriptionally activated by a LuxR-type regulator and located on a 6 kb genomic island absent from the type strain ATCC 13032. Hansmeier N; Albersmeier A; Tauch A; Damberg T; Ros R; Anselmetti D; Pühler A; Kalinowski J Microbiology (Reading); 2006 Apr; 152(Pt 4):923-935. PubMed ID: 16549657 [TBL] [Abstract][Full Text] [Related]
40. Engineering of Corynebacterium glutamicum for xylitol production from lignocellulosic pentose sugars. Dhar KS; Wendisch VF; Nampoothiri KM J Biotechnol; 2016 Jul; 230():63-71. PubMed ID: 27184428 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]