BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 19346396)

  • 1. Distribution and abundance of host-seeking Culex species at three proximate locations with different levels of West Nile virus activity.
    Rochlin I; Ginsberg HS; Campbell SR
    Am J Trop Med Hyg; 2009 Apr; 80(4):661-8. PubMed ID: 19346396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High subclinical West Nile virus incidence among nonvaccinated horses in northern California associated with low vector abundance and infection.
    Nielsen CF; Reisen WK; Armijos MV; Maclachlan NJ; Scott TW
    Am J Trop Med Hyg; 2008 Jan; 78(1):45-52. PubMed ID: 18187784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Host selection by Culex pipiens mosquitoes and West Nile virus amplification.
    Hamer GL; Kitron UD; Goldberg TL; Brawn JD; Loss SR; Ruiz MO; Hayes DB; Walker ED
    Am J Trop Med Hyg; 2009 Feb; 80(2):268-78. PubMed ID: 19190226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epidemiology of West Nile virus in Connecticut: a five-year analysis of mosquito data 1999-2003.
    Andreadis TG; Anderson JF; Vossbrinck CR; Main AJ
    Vector Borne Zoonotic Dis; 2004; 4(4):360-78. PubMed ID: 15682518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. West Nile virus infection in mosquitoes, birds, horses, and humans, Staten Island, New York, 2000.
    Kulasekera VL; Kramer L; Nasci RS; Mostashari F; Cherry B; Trock SC; Glaser C; Miller JR
    Emerg Infect Dis; 2001; 7(4):722-5. PubMed ID: 11589172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The contribution of Culex pipiens complex mosquitoes to transmission and persistence of West Nile virus in North America.
    Andreadis TG
    J Am Mosq Control Assoc; 2012 Dec; 28(4 Suppl):137-51. PubMed ID: 23401954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prevalence of West Nile virus in tree canopy-inhabiting Culex pipiens and associated mosquitoes.
    Anderson JF; Andreadis TG; Main AJ; Kline DL
    Am J Trop Med Hyg; 2004 Jul; 71(1):112-9. PubMed ID: 15238699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the impact of variable climatic factors on the crossover of Culex restauns and Culex pipiens (Diptera: culicidae), vectors of West Nile virus in Illinois.
    Kunkel KE; Novak RJ; Lampman RL; Gu W
    Am J Trop Med Hyg; 2006 Jan; 74(1):168-73. PubMed ID: 16407364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A two-year evaluation of elevated canopy trapping for Culex mosquitoes and West Nile virus in an operational surveillance program in the northeastern United States.
    Andreadis TG; Armstrong PM
    J Am Mosq Control Assoc; 2007 Jun; 23(2):137-48. PubMed ID: 17847845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mosquito surveillance for West Nile virus in Connecticut, 2000: isolation from Culex pipiens, Cx. restuans, Cx. salinarius, and Culiseta melanura.
    Andreadis TG; Anderson JF; Vossbrinck CR
    Emerg Infect Dis; 2001; 7(4):670-4. PubMed ID: 11585530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental risk factors of West Nile virus infection of horses in the Senegal River basin.
    Chevalier V; Dupressoir A; Tran A; Diop OM; Gottland C; Diallo M; Etter E; Ndiaye M; Grosbois V; Dia M; Gaidet N; Sall AA; Soti V; Niang M
    Epidemiol Infect; 2010 Nov; 138(11):1601-9. PubMed ID: 20175940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [West Nile virus: a new challenge?].
    Valero N
    Invest Clin; 2003 Sep; 44(3):175-7. PubMed ID: 14552056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Culex restuans (Diptera: Culicidae) relative abundance and vector competence for West Nile Virus.
    Ebel GD; Rochlin I; Longacker J; Kramer LD
    J Med Entomol; 2005 Sep; 42(5):838-43. PubMed ID: 16363169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging vectors in the Culex pipiens complex.
    Fonseca DM; Keyghobadi N; Malcolm CA; Mehmet C; Schaffner F; Mogi M; Fleischer RC; Wilkerson RC
    Science; 2004 Mar; 303(5663):1535-8. PubMed ID: 15001783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of enhanced vector transmission of a new West Nile virus strain in an outbreak of equine disease in Australia in 2011.
    van den Hurk AF; Hall-Mendelin S; Webb CE; Tan CS; Frentiu FD; Prow NA; Hall RA
    Parasit Vectors; 2014 Dec; 7():586. PubMed ID: 25499981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unexpected spatiotemporal abundance of infected Culex restuans suggest a greater role as a West Nile virus vector for this native species.
    Johnson BJ; Robson MG; Fonseca DM
    Infect Genet Evol; 2015 Apr; 31():40-7. PubMed ID: 25599877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. West Nile virus in mosquitoes of northern Ohio, 2003.
    White BJ; Andrew DR; Mans NZ; Ohajuruka OA; Garvin MC
    Am J Trop Med Hyg; 2006 Aug; 75(2):346-9. PubMed ID: 16896146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. West Nile virus-infected mosquitoes, Louisiana, 2002.
    Godsey MS; Nasci R; Savage HM; Aspen S; King R; Powers AM; Burkhalter K; Colton L; Charnetzky D; Lasater S; Taylor V; Palmisano CT
    Emerg Infect Dis; 2005 Sep; 11(9):1399-404. PubMed ID: 16229769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seasonal dynamics of four potential West Nile vector species in north-central Texas.
    Bolling BG; Kennedy JH; Zimmerman EG
    J Vector Ecol; 2005 Dec; 30(2):186-94. PubMed ID: 16599151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonviremic transmission of West Nile virus: evaluation of the effects of space, time, and mosquito species.
    McGee CE; Schneider BS; Girard YA; Vanlandingham DL; Higgs S
    Am J Trop Med Hyg; 2007 Mar; 76(3):424-30. PubMed ID: 17360862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.