BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 19346450)

  • 1. Vasoactive intestinal polypeptide entrains circadian rhythms in astrocytes.
    Marpegan L; Krall TJ; Herzog ED
    J Biol Rhythms; 2009 Apr; 24(2):135-43. PubMed ID: 19346450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian rhythm generation and entrainment in astrocytes.
    Prolo LM; Takahashi JS; Herzog ED
    J Neurosci; 2005 Jan; 25(2):404-8. PubMed ID: 15647483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vasoactive intestinal polypeptide requires parallel changes in adenylate cyclase and phospholipase C to entrain circadian rhythms to a predictable phase.
    An S; Irwin RP; Allen CN; Tsai C; Herzog ED
    J Neurophysiol; 2011 May; 105(5):2289-96. PubMed ID: 21389307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons.
    Webb AB; Angelo N; Huettner JE; Herzog ED
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16493-8. PubMed ID: 19805326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A neuropeptide speeds circadian entrainment by reducing intercellular synchrony.
    An S; Harang R; Meeker K; Granados-Fuentes D; Tsai CA; Mazuski C; Kim J; Doyle FJ; Petzold LR; Herzog ED
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):E4355-61. PubMed ID: 24167276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ontogeny of Circadian Rhythms and Synchrony in the Suprachiasmatic Nucleus.
    Carmona-Alcocer V; Abel JH; Sun TC; Petzold LR; Doyle FJ; Simms CL; Herzog ED
    J Neurosci; 2018 Feb; 38(6):1326-1334. PubMed ID: 29054877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons.
    Aton SJ; Colwell CS; Harmar AJ; Waschek J; Herzog ED
    Nat Neurosci; 2005 Apr; 8(4):476-83. PubMed ID: 15750589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation of PC12 cells results in enhanced VIP expression and prolonged rhythmic expression of clock genes.
    Pretzmann CP; Fahrenkrug J; Georg B
    J Mol Neurosci; 2008 Nov; 36(1-3):132-40. PubMed ID: 18810660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entrainment of Circadian Rhythms Depends on Firing Rates and Neuropeptide Release of VIP SCN Neurons.
    Mazuski C; Abel JH; Chen SP; Hermanstyne TO; Jones JR; Simon T; Doyle FJ; Herzog ED
    Neuron; 2018 Aug; 99(3):555-563.e5. PubMed ID: 30017392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SCN VIP Neurons Are Essential for Normal Light-Mediated Resetting of the Circadian System.
    Jones JR; Simon T; Lones L; Herzog ED
    J Neurosci; 2018 Sep; 38(37):7986-7995. PubMed ID: 30082421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vasoactive intestinal polypeptide mediates circadian rhythms in mammalian olfactory bulb and olfaction.
    Miller JE; Granados-Fuentes D; Wang T; Marpegan L; Holy TE; Herzog ED
    J Neurosci; 2014 Apr; 34(17):6040-6. PubMed ID: 24760863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vasoactive intestinal polypeptide induces per1 and per2 gene expression in the rat suprachiasmatic nucleus late at night.
    Nielsen HS; Hannibal J; Fahrenkrug J
    Eur J Neurosci; 2002 Feb; 15(3):570-4. PubMed ID: 11876785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Select cognitive deficits in vasoactive intestinal peptide deficient mice.
    Chaudhury D; Loh DH; Dragich JM; Hagopian A; Colwell CS
    BMC Neurosci; 2008 Jul; 9():63. PubMed ID: 18616823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circadian regulation of cardiovascular function: a role for vasoactive intestinal peptide.
    Schroeder A; Loh DH; Jordan MC; Roos KP; Colwell CS
    Am J Physiol Heart Circ Physiol; 2011 Jan; 300(1):H241-50. PubMed ID: 20952671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An autonomous circadian clock in the inner mouse retina regulated by dopamine and GABA.
    Ruan GX; Allen GC; Yamazaki S; McMahon DG
    PLoS Biol; 2008 Oct; 6(10):e249. PubMed ID: 18959477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immortalized cell lines for real-time analysis of circadian pacemaker and peripheral oscillator properties.
    Farnell YF; Shende VR; Neuendorff N; Allen GC; Earnest DJ
    Eur J Neurosci; 2011 Apr; 33(8):1533-40. PubMed ID: 21366728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei.
    Harmar AJ; Marston HM; Shen S; Spratt C; West KM; Sheward WJ; Morrison CF; Dorin JR; Piggins HD; Reubi JC; Kelly JS; Maywood ES; Hastings MH
    Cell; 2002 May; 109(4):497-508. PubMed ID: 12086606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different Roles for VIP Neurons in the Neonatal and Adult Suprachiasmatic Nucleus.
    Mazuski C; Chen SP; Herzog ED
    J Biol Rhythms; 2020 Oct; 35(5):465-475. PubMed ID: 32536240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circadian modulation of gene expression, but not glutamate uptake, in mouse and rat cortical astrocytes.
    Beaulé C; Swanstrom A; Leone MJ; Herzog ED
    PLoS One; 2009 Oct; 4(10):e7476. PubMed ID: 19829696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arginine-vasopressin and vasointestinal polypeptide rhythms in the suprachiasmatic nucleus of the mouse lemur reveal aging-related alterations of circadian pacemaker neurons in a non-human primate.
    Cayetanot F; Bentivoglio M; Aujard F
    Eur J Neurosci; 2005 Aug; 22(4):902-10. PubMed ID: 16115213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.